COMPUTATION OF MEMBRANE EIGENVALUES AND THEIR SHAPE DERIVATIVES USING CONFORMAL MAPPING

Jiho Hong

1) Department of Mathematical Sciences, KAIST, Daejeon 34141, KOREA

ABSTRACT

We consider the eigenvalues of vibrating membranes. The membrane eigenvalues [Laplacian eigenvalues of planar domains] are the characteristic values of the boundary integral operators. We approximate the boundary integral operators by computable matrices following a two-step procedure: the frequency expansion of the integration kernel and the basis expansion with geometric density functions. As a result, we propose a computation scheme for the membrane eigenvalues of arbitrary-shaped simply connected domains. Based on the Gohberg–Sigal theory, we derive its a priori error bounds that depend on the Hölder constants of the boundaries. Our computational results include the membrane eigenvalues and their shape derivatives for dumbbell-shaped domains.

REFERENCES