Initialization strategy for value and policy iterations with application to the game of Tetris

Sangwook Hwang, Dongin Sin, Ui Jeong Yu, Byungjoon Lee

1) Department of Mathematics, The Catholic University of Korea, Korea

Corresponding Author: Sangwook Hwang, lall21@naver.com

ABSTRACT

Value and policy iterations are fundamental algorithms for understanding the mechanism of reinforcement learning. In this presentation, we focus on the selection on initial values for value and policy iterations with application to the game of Tetris. In many applications, the initial values for value and policy iterations are randomly selected. Because of this randomness, the iterations tend to compute all possible cases, which increase the amount of computation.

In this presentation, we discuss how to solve these computational issue and present the strategies for selecting the initial values for value and policy iterations enhancing the performance of iterations when it comes to the game of Tetris.

REFERENCES