
J. KSIAM Vol.24, No.1, 1–22, 2020 http://dx.doi.org/10.12941/jksiam.2020.24.001

LEAST-SQUARE SWITCHING PROCESS FOR ACCURATE AND EFFICIENT
GRADIENT ESTIMATION ON UNSTRUCTURED GRID

SEUNGPYO SEO1, CHANGSOO LEE2, EUNSA KIM2,KYEOL YUNE2, AND CHONGAM KIM2†

1DEFENSE R&D CENTER, HANHWA CORPORATION, REPUBLIC OF KOREA

Email address: eclipse tr@naver.com
2DEPARTMENT OF AEROSPACE ENGINEERING, SEOUL NATIONAL UNIVERSITY, REPUBLIC OF KOREA

Email address: chongsoo89@gmail.com, kes5885@snu.ac.kr
Email address: hwwwooo@naver.com, chongam@snu.ac.kr

ABSTRACT. An accurate and efficient gradient estimation method on unstructured grid is pre-
sented by proposing a switching process between two Least-Square methods. Diverse test cases
show that the gradient estimation by Least-Square methods exhibit better characteristics com-
pared to Green-Gauss approach. Based on the investigation, switching between the two Least-
Square methods, whose merit complements each other, is pursued. The condition number of
the Least-Square matrix is adopted as the switching criterion, because it shows clear correlation
with the gradient error, and it can be easily calculated from the geometric information of the
grid. To illustrate switching process on general grid, condition number is analyzed using stencil
vectors and trigonometric relations. Then, the threshold of switching criterion is established.
Finally, the capability of Switching Weighted Least-Square method is demonstrated through
various two- and three-dimensional applications.

1. INTRODUCTION

Under the Finite Volume cell-centered regime, Monotonic Upwind Scheme for Conservation
Laws (MUSCL) type schemes with second-order spatial discretization are extensively utilized
in modern CFD solver. In the meantime, growing importance of accuracy of gradient, or de-
rivative of flow variable, is noticeable because of its broad range of usage including solution
reconstruction of MUSCL type scheme, evaluation of viscous flux and turbulent source term.

With gradual increment in complexity of geometry of flow problem, many CFD practitioners
are counting on unstructured grid where automatic mesh generation greatly relieves the burden
of laborious task. However, absence of organized cell-to-cell connectivity on unstructured grid
brings about another challenge, that is, general way of approximating a cell-centered gradient is
not applicable anymore. On the unstructured grid, two most popular approaches for obtaining
estimate of gradient are method by Green-Gauss theorem and Least-Square method. However,
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FIGURE 1. The geometry and grid where gradient accuracy is deteriorated

no consensus over the accuracy, robustness, and efficiency are made up to this day. Mavriplis
[1] pointed out that Least-Square method with compact stencil (or nearest neighbor) may lead
to poor gradient accuracy when applied to a cell with high aspect ratio, especially near surface
curvature. Diskin et al. [2] and Correa et al. [3] made comparison between existing gradient
estimations on diverse regular and irregular grids. Shima et al. [4] came up with an idea to mix
the advantages of two popular gradient estimation methods.

Meanwhile, severe gradient accuracy degradation is detected near a narrow and complicated
configuration of the aircraft, especially at the space between the tail control surface and the
nozzle in Fig. 1. During the computation, breakdown of gradient accuracy causes a numerical
oscillation at the region, leading to the simulation failure in the end. The full configuration of
the aircraft is not presented here for security concerns.

The present research aims at proposing a gradient estimation method which is accurate and
efficient on arbitrary unstructured mesh. To be specific, the goal of this work is devising a
switching process between two Least-Square methods on qualitative and quantitative basis.
The material in this paper is organized in the following order. Section 2 introduces the basic
concept of Green-Gauss theorem and Least-Square methods investigated in this paper. Section
3 deals with comparison of results by existing gradient estimation methods via diverse test
cases. Based on section 3, section 4 describes how the switching Least-Square method is
developed. Section 5 shows applications of SWLSQ together with CWLSQ and EWLSQ.
Lastly, Section 6 summarizes the content of this work.

2. GRADIENT ESTIMATION METHODS

2.1. Least Square Method. Least-Square method is a broadly used approach for approximat-
ing the solution of overdetermined system in various applications. In this case, it is utilized
to estimate the gradient of a cell on unstructured grid. The overdetermined system where the
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Least-Square method is applied can be derived from the first-order Taylor series expansion
about the cell of interest

φj = φi +∇φi ·
−→
dij , (2.1)

where φi and φj are flow quantities at the target cell and the neighboring cell (or stencil)
respectively, and

−→
dij is a vector from the cell i to the stencil j. Furthermore,∇φi is the gradient

of the target cell which stands for the rate of change of flow quantity in x, y, and z direction.
Applying the Eq. (2.1) to all surrounding stencils, and rearranging the equations, following
overdetermined system of equations is derived

∆xi1 ∆yi1 ∆zi1
∆xi2 ∆yi2 ∆zi2

...
...

...
∆xiN ∆yiN ∆ziN


(∂φ/∂x)

(∂φ/∂y)
(∂φ/∂z)


i

=


∆φi1
∆φi2

...
∆φiN

 , (2.2)

or
A−→x =

−→
b , (2.3)

with N denoting the number of stencil and 4(·)ij = (·)j − (·)i. It is known [1] that Least-
Square method may yield poor gradient accuracy on grid with surface curvature and high aspect
ratio unless proper weighting function is accompanied by. Introducing the weighting function
and multiplying AT to both sides of Eq. (2.3), one can obtain

N∑
j

wij (∆xij)
2

N∑
j

wij∆xij∆yij

N∑
j

wij∆xij∆zij

N∑
j

wij∆xij∆yij

N∑
j

wij (∆yij)
2

N∑
j

wij∆yij∆zij

N∑
j

wij∆xij∆zij

N∑
j

wij∆yij∆zij

N∑
j

wij (∆zij)
2



(∂φ/∂x)∗

(∂φ/∂y)∗

(∂φ/∂z)∗

 =



N∑
j

wij∆xij∆φij

N∑
j

wij∆yij∆φij

N∑
j

wij∆zij∆φij


(2.4)

or
(ATA)−→x ∗ = AT−→b ,

which is called the normal equation. Inversing the matrix on the left-hand side leads to

−→x ∗ = (ATA)−1AT−→b ,

where wij = 1/
∣∣∣−→dij∣∣∣2is inverse square of distance between two cells, a typical weighting

function, and the asterisk symbol * indicates the estimated value. Alternative ways of handling
the Eq. (2.2) have also been studied by researchers, such as one implementing the Gram-
Schmidt process [5, 6]. Note that the matrix on the left-hand side of the normal equation
ATA, or Least-Square matrix from here, is solely composed of element of distance vector

−→
dij .

This implies that property of Least-Square matrix, such as condition number, can be readily
evaluated from the geometric information of given grid, as will be exploited in later section.
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FIGURE 2. Schematic of stencil configuration of gradient estimation methods

Meanwhile, gradient by Least-Square method can be distinguished from one another by
the fashion it selects the neighboring stencil. In this study, Least-Square method that chooses
the compact stencil (or nearest stencil), whose face is shared with the target cell, is named
Compact stencil Weighted Least-Square method (CWLSQ). In similar manner, Least-Square
method that adopts extended stencil (or full augmentation), who shares cell node with the target
cell, is called Extended stencil Weighted Least-Square method (EWLSQ). Fig. 2 depicts the
stencil configuration of two Least-Square methods.

2.2. Green-Gauss Theorem. Green-Gauss theorem relates the volume integral of gradient of
a scalar function φ to the surface integral of the φ, namely

ˆˆˆ
V
∇φdV =

‹

S

φ · −→n dS, (2.5)

with V and S meaning control volume and control surface of the cell respectively. In addition,
−→n denotes a unit normal vector pointing outward of the cell. Since the flow variable within the
particular control volume is assumed to be constant in cell-centered FVM scheme, Eq. (2.5)
can be expressed as

V∇φ =

‹

S

φ · −→n dS. (2.6)

Then, surface integral of Eq. (2.6) is discretized as sum of the flow variable passing through
the control surface,

V∇φ =
N∑
k=1

φk
−→nkSk,

or

∇φ =
1

V

N∑
k=1

φk
−→nkSk, (2.7)
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FIGURE 3. Three types of grids around a circle

FIGURE 4. Mixed grid and grid around a NACA0012 airfoil

where φk, −→nk, and Sk refer to flow variable, unit normal vector, and face area of k-th cell
face respectively. The mean flow variable at the face is only unknown which directly affects
the accuracy of gradient. In this work, two branches of Green-Gauss methods are examined,
Green-Gauss method using Simple Averaging (GGSA) and Node Averaging (GGNA).

GGSA approximates the cell interface value by taking an average of the left and the right
flow variable of the interface, which is quite straightforward and needs little cost for application

φk =
φleft + φright

2
.

On the other hand, the cell interface value is acquired through two steps in GGNA. Firstly, to
interpolate the flow quantity at particular node of the interface, flow quantities at surrounding
cell-centers are averaged, with or without inverse weight. Next, these interpolated nodal values
are averaged again to estimate the cell interface value
STEP1:

φnode =

N∑
j=1

wiφi

N∑
j=1

wi

,
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FIGURE 5. Comparison of gradient error on quadrilateral grid

FIGURE 6. One-dimensional case with non-uniform interval

STEP2:

φk =
φnode,1 + φnode,2 + · · · + φnode,n

n
,

Note that the capital n refers to the number of cells around the node, while lowercase n
indicates the number of nodes. Same as the two Least-Square methods, the schematic of the
way GGSA and GGNA refer to stencils is illustrated in Fig. 2

Although Green-Gauss methods are easy to implement with relatively little cost, these ap-
proaches possess intrinsic drawback; they cannot give exact gradient value even for a simple
linear function. More details are described in the later section.

3. ANALYSIS OF PRECEDING APPROACHES

This section analyzes the accuracy of the aforementioned gradient estimation methods on
diverse grid types with linear and nonlinear test function.

3.1. Grid Type. Five types of grids are considered; quadrilateral grid, uniformly diagonal-
ized triangular grid, randomly diagonalized triangular grid, mixed grid, and unstructured grid
around a NACA0012 airfoil. All grid types, except mixed grid and the grid around an airfoil,
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have things in common in that they are generated around a circle and contain cells with high
aspect ratio, about 500 for maximum. This is because those regions have been a major concern
of many research [1, 7, 8]. Figures 3-4 summarize figure of all grid types.

3.2. Test Function. In order to assess the accuracy of each gradient method, test function that
can provide reference gradient value is demanded. Thus, two test functions, linear function and
nonlinear function, are used as follows

φ = x2 + y2 = r2,

φ = x+ 2y + 0.5.

With the test function, gradient error is evaluated at each grid cell

ei =

∣∣∣∣∇φi,exact −∇φi,estimated

∇φi,exact

∣∣∣∣× 100.

3.3. Observation. To begin with, four gradient estimation methods are compared with respect
to quadrilateral grid. As stated in other studies [9, 10], Green-Gauss methods show good
performance in viscous boundary layer grid, less than 1% of error, not to mention the gradient
by Least-Square methods, as illustrated in Fig. 5. However, it should be noted that when
it comes to the linear test function, Least-Square methods tend to produce remarkably small
amount of gradient error, about O(10−10), whereas that of Green-Gauss methods almost stay
as it is regardless of grid refinement.

To inspect the properties of gradient by Green-Gauss theorem, one-dimensional grid with
non-uniform spacing is employed [9] as shown in Fig. 6. Applying Eq. (2.7) results in

∇φi,GGSA =
1

V

N∑
k=1

φk
−→nkSk

=
φi+1/2 − φi−1/2

∆xi
.

Substituting cell interface value with cell-centered value leads to

∇φi,GGSA =
φi+1 − φi−1

2∆xi
(3.1)

Then, φi+1 and φi−1, obtained from Taylor series expansion, are replaced into Eq. (3.1)

∇φi,GGSA = ∇φi
(

1

2
+

∆xi+1 + ∆xi−1

4∆xi

)
+∇2φi

(
∆xi+1 + ∆xi−1

8
+

∆xi+1
2 + ∆xi−1

2

16∆xi

)
+O(h2)

= ∇φi +∇φi
(
−1

2
+

∆xi+1 + ∆xi−1

4∆xi

)
+O(h) (3.2)

It is clear that the GGSA cannot recover the exact gradient, leaving zeroth-order as leading error
term. Even though it may lead to second-order accuracy when unpractical uniform grid interval
is assumed, Eq. (3.2) suggests that GGSA is inherently inconsistent method. As for GGNA,
same conclusion is attained from procedures described above. Undoubtedly, two Green-Gauss
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FIGURE 7. Contour of gradient error by GGSA and GGNA on other types of grid

type methods produce large gradient error on other test cases as can be found in Fig. 7. To sum
up, gradient by Green-Gauss theorem should not be preferred on pragmatic grid circumstances
where combination of non-uniform and diverse grid type is inevitable

In the meantime, EWLSQ outperforms CWLSQ on all kinds of grid in terms of gradient
accuracy. Whereas EWLSQ shows less than 1% error on randomly diagonalized grid, for
example, CWLSQ presents over 20% error near wall as shown in Fig. 8. The result from
the uniform triangular grid is same as the random triangular grid that it is not shown here.
Excellence in gradient accuracy of EWLSQ in overall test cases is obvious, but it should be
remembered that there are cases where CWLSQ also exhibits fair gradient accuracy. Indeed,
shortcoming of EWLSQ is that it necessitates about two to dozens of more stencil to estimate
the gradient compared to CWLSQ, compromising computational time accordingly.

4. LEAST-SQUARE METHOD SWITCHING FUNCTION

4.1. Motivation. Earlier investigation shows that generally, gradient by Green-Gauss theorem
is not appropriate for grid situations encountered in practical flow problems. On the other
hands, EWLSQ presents overall better gradient accuracy compared to CWLSQ, paying for a
number of stencils, and thus, computational cost. In addition, one should be reminded that
there are cases where CWLSQ can make comparable gradient accuracy, claiming relatively
little cost. Hence, this observation calls for a method where two Least-Square methods are
selectively exploited under a suitable switching criterion, making use of advantage of each
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FIGURE 8. Contour of gradient error by CWLSQ and EWLSQ

method. In the meantime, to accomplish the Switching Weighted Least-Square method (or
SWLSQ) on universal grid types, a consistent switching standard is mandatory.

For the first step, conventional grid quality indexes, such as aspect ratio, skewness, or area
ratio, can be taken as candidates. Figure 9 describes result of gradient error versus grid quality
indexes, where randomly diagonalized triangular grid and nonlinear test function are employed.
However, it is evident that none of the candidates show clear link with the gradient error. From
the perspective of skewness, for example, gradient error is small and plain until it soars around
the skewness of about 1. Furthermore, these indexes cannot play their role properly when the
target cell with favorable grid quality is surrounded by bad quality cells. Namely, even if the
grid qualities of stencil are bad, since that of the target cell is satisfactory, switching method will
choose CWLSQ as gradient estimation, leading to poor gradient accuracy. In short, accuracy of
gradient by Least-Square methods is not only affected by the grid quality of the target cell, but
also by stencil configuration around it. Therefore, switching criteria should be able to include
stencil information encompassing the target cell.

4.2. Condition number of Least-Square matrix. In the field of linear algebra, the condition
number of a matrix is used as a measure of sensitivity of the output to the change in the input.
For a normal matrix A, the condition number is defined as

k(A) =
|λmax(A)|
|λmin(A)|

,
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FIGURE 9. Gradient error of CWLSQ with respect to conventional grid qual-
ity criterion

FIGURE 10. Comparison Least-Square methods regarding the condition num-
ber and the gradient error

where λ is eigenvalue of the matrix A. Revisit the Least-Square formulation in Eq. (2.4) to
introduce the concept of the condition number

N∑
j

wij (∆xij)
2

N∑
j

wij∆xij∆yij

N∑
j

wij∆xij∆zij

N∑
j

wij∆xij∆yij

N∑
j

wij (∆yij)
2

N∑
j

wij∆xij∆zij

N∑
j

wij∆xij∆zij

N∑
j

wij∆yij∆zij

N∑
j

wij (∆zij)
2



(∂φ/∂x)∗

(∂φ/∂y)∗

(∂φ/∂z)∗


i

=



N∑
j

wij∆xij∆φij

N∑
j

wij∆yij∆φij

N∑
j

wij∆zij∆φij


(4.1)

or shortly,

A−→x ∗ = AT−→b , (4.2)
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FIGURE 11. Result of two Least-Square methods about linear test function

whereA = ATA is the Least-Square matrix as stated in previous section. That is, the condition
number of Least-Square matrix k(A) informs how the estimated gradient −→x ∗ would respond
to a small change in AT−→b .

Consider a case where CWLSQ and EWLSQ shows stark difference; two triangular grid
types as depicted in Fig. 10. In both cases, it is clear that the gradient error of CWLSQ
gradually increases in proportion to the Least-Square matrix condition number, while those of
EWLSQ are found to be small and clustered around 0. The rationale behind the correlation of
gradient error and condition number will be handled in next section.

Meanwhile, Eq. (4.2) can be cast into following form with slight modification on right-hand
side (

ATA
)−→x ∗ =

N∑
j=1

wij
−→
d ij∆

−→
φ ij . (4.3)

Here, one should be reminded that, originally, Eq. (4.3) holds second-order truncation error,
which is neglected for first-order Taylor series expansion in Eq. (2.1). Namely

(
ATA

)−→x ∗ =
N∑
j=1

wij
−→
d ij∆

−→
φ ij +O

(
h2
)
.
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FIGURE 12. An example of stencil vectors around the target cell

From the condition number point of view, the truncation error can be interpreted as a small
perturbation to input of Least-Square system. Therefore, for an ill-conditioned system, this
truncation error is potential source of error, which deteriorates the gradient accuracy. On the
contrary, provided that the truncation error from Least-Square formulation is sufficiently low,
it barely damages the gradient accuracy even for high condition number. As shown in Fig. 11,
even if CWLSQ yields condition number as high as 15000, gradient error is just bounded under
O(10−10).

In summary, unlike the conventional grid quality indexes, condition number of Least-Square
matrix has clear connection with gradient error. In addition, as in the Eq. (4.1), the Least-
Square matrix is made up of element of distance vector, which is entirely geometric information
of given grid. Thus, the condition number of each cell can be pre-computed and stored before
numerical iterations.

4.3. Behavior of condition number of CWLSQ and EWLSQ. Earlier example presents the
condition number is closely concerned to the gradient error of Least-Square methods, indicat-
ing that the condition number can be a good switching criterion. Remaining questions are; why
CWLSQ leads to large condition number with poor gradient accuracy, and what’s the suitable
threshold of condition number for two Least-Square methods to be effectively alternated.

For further analysis, consider a two-dimensional case whose Least-Square matrix size is
2× 2

A =


N∑
j

wij(∆xij)
2

N∑
j

wij∆xij∆yij

N∑
j

wij∆xij∆yij

N∑
j

wij(∆yij)
2

 =

[
a b
c d

]
, (4.4)
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FIGURE 13. An example of stencil vectors around the target cell

where components of the matrix are replaced with a, b, c, and d for simplicity. By definition of
the condition number

k(A) =
|λmax|
|λmin|

=
(a+ d) +

√
(a− d)2 + 4bc

(a+ d)−
√

(a− d)2 + 4bc
. (4.5)

Then, trigonometric function and its identities are introduced to Eq. (4.5) for better understand-
ing, using a concept of stencil vectors illustrated in Fig. 12.

For example, a + d in Eq. (4.5) can be exchanged with simpler and informative expression
N, which refers to the number of the stencil used for gradient estimation

a+ d =
N∑
j=1

wij(∆x
2
ij + ∆y2ij) = N.

Likewise, every term in Eq. (4.5) are replaced as follows

a− d =

N∑
j=1

wij(∆xij
2 −∆yij

2)

=
N∑
j=1

(∣∣∣−→dij∣∣∣2 cos2 θj −
∣∣∣−→dij∣∣∣2 sin2 θj

)
∣∣∣−→dij∣∣∣2 =

N∑
j=1

cos 2θj ,
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FIGURE 14. Switching process between two Least-Square methods

4bc = 4

N∑
j=1

wij∆xij∆yij

N∑
j=1

wij∆xij∆yij

= 4

N∑
j=1

cos θj sin θj

N∑
j=1

cos θj sin θj =

 N∑
j=1

sin 2θj

2

.

Finally, Eq. (4.5) can be rewritten to obtain new expression about the condition number

k(A) =
(a+ d) +

√
(a− d)2 + 4bc

(a+ d)−
√

(a− d)2 + 4bc

=
N +

√
N + p

N −
√
N + p

,

where p is a function of angles described by stencil vectors. For two-dimensional quadrilateral
grid, where a target cell has four stencils, p is represented as follows

p = 2[cos 2(θ1 − θ2) + cos 2(θ1 − θ3) + · · ·+ cos 2(θ3 − θ4)].

When it comes EWLSQ which takes about ten times more stencils than CWLSQ in three-
dimensional case, the condition number can stay low because relatively large N in denominator
keeps the condition number from being amplified. In contrast, CWLSQ is vulnerable to dra-
matic change of condition number, and consequently, it brings about undesirably large gradient
error. The test case of Fig. 13 demonstrates the different behavior of CWLSQ and EWLSQ.
About four times greater number of stencils of EWLSQ prevents the condition number from
exponential increment, while CWLSQ fails to do so.

Thanks to large number of stencils, EWLSQ can achieve lower condition number compared
CWLSQ regardless of grid type. Therefore, one might propose the maximum condition number
of EWLSQ as the threshold of switching value. That is, a grid cell whose condition number
of CWLSQ exceeds the maximum condition number of EWLSQ should adopt a wider range
of stencil before moving onto actual flow computation. However, it will be shown that setting
the maximum condition number of EWLSQ as the limit of conversion may display advantages
in the grid around a simple geometry, but this standard is susceptible to overshoot of condition
number found in complex applications. Some may suggest certain fixed value as a criterion,
which is simple and convenient, but certain magnitude of number is not capable of handling
the condition number disparity arise from various geometry and different dimensions. Another
possible candidate for switching value is mean condition number of EWLSQ. In the following
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FIGURE 15. Comparison of three Least-Square methods on 2D triangular grid

FIGURE 16. Comparison of three Least-Square methods on 3D tetrahedral grid

section, maximum condition number and average condition number of EWLSQ are explored
simultaneously for switching value.

4.4. Simple Demonstration. Capability of Switching Weighted Least-Square method (SWLSQ)
and two Least-Square methods are compared in simple two- and three-dimensional example.
Henceforth, SWLSQ stands for a type of Least-Square method switching between CWLSQ
and EWLSQ based on certain criterion.
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FIGURE 17. Comparison of three Least-Square methods on NACA0012 airfoil

Figure 15 describes the result of three Least-Square methods applied to randomly diago-
nalized triangular grid around a circle with nonlinear test function. The plot and the contour
described in Fig. 15 are based on maximum condition number. As for the maximum condition
number, about 32% of cell are switched from CWLSQ to EWLSQ, reducing the gradient er-
ror as low as EWLSQ. With the average condition number, approximately 5% more cells are
converted from CWLSQ to EWLSQ. This result may give an impression that the maximum
condition number is a more effective switching criterion for SWLSQ. However, shortcoming
of the maximum condition number is revealed in more complex practices. Similar observation
is found in random tetrahedral grid around a sphere as in Fig. 16. When CWLSQ is used
alone, the gradient error skyrockets over 400%, but the switching mechanism successfully
helps SWLSQ to restore the gradient accuracy.

5. APPLICATION

5.1. Two-dimensional NACA0012 airfoil. Firstly, flow over a two-dimensional NACA0012
airfoil is examined. A brief explanation about the case is listed in Table 1. Thanks to decent grid
quality around the NACA0012 airfoil, CWLSQ shows mild level of condition number in entire
flow space. Therefore, SWLSQ does not need to employ large number of EWLSQ stencil, and
thus, about 1% of cell were switched from CWLSQ to EWLSQ. Hence, as depicted in Fig. 17,
result by three Least-Square method provides almost same pressure coefficient. However, one
should note that SWLSQ can save about 18% of computation time compared to EWLSQ.

5.2. Three-dimensional wing-body configuration. Three-dimensional wing-body configu-
ration, or common research model (CRM), is another commonly used verification model. First
of all, it should be mentioned that SWLSQ fails to compute the simulation when maximum
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condition number of EWLSQ is used as the threshold for switching process. This is because
few cells with exceptionally large EWLSQ condition number are detected, and these cells make
the criterion too loose to control the switching process. In general, this kind of cells inhabit
near boundary cells where abnormal stencil distribution is inevitable. As a result, only an in-
sufficient number of cells are switched, and SWLSQ fails the simulation. Therefore, from now
on, mean EWLSQ condition number is exploited for stability issue.

As described in Fig. 14, one should check the condition number of two Least-Square meth-
ods beforehand. As for the CRM geometry, Fig. 18 shows that grid near the trailing edge of
the wing is potential source of trouble, with high CWLSQ condition number. While CWLSQ
alone produces maximum gradient error of about 260%, SWLSQ with average condition num-
ber enables the gradient accuracy to recover to EWLSQ level.

A brief description about the case is shown in Table 2. As expected from bad condition
number at the wing, CWLSQ fails to solve this flow problem. In contrast, SWLSQ not only
reduces computational time by 10% from EWLSQ, but also predict lift and drag coefficient as
accurately as EWLSQ (Table 3), giving almost same pressure contour in Fig. 19.

TABLE 1. Summary of the flow simulation over NACA0012 airfoil

Simulation Information Value
Mach Number 0.5

Angle of Attack 1.25
Reynolds Number 1.1× 107

Flow Type Turbulent Flow
Turbulence model Menter’s k-w SST
Convective flux RoeM [11]

Time Integration Method Implicit Euler
Linear Algebra Method LU-SGS

TABLE 2. Summary of the flow simulation over CRM

Simulation Information Value
Mach Number 0.85

Angle of Attack 2.3
Reynolds Number 5.1× 106

Flow Type Turbulent Flow
Turbulence model Menter’s k-w SST
Convective flux AUSMPW+ [12]

Time Integration Method Implicit Euler
Linear Algebra Method GMRES
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FIGURE 18. Comparison of three Least-Square methods with test function on CRM

FIGURE 19. Comparison of pressure contour by two Least-Square methods

5.3. Three-dimensional modern fighter configuration. To present the switching on more
practical application, a modern fighter configuration is considered. It is mentioned here that
details of computation, including full configuration, result of aerodynamic coefficients are not
disclosed for security reasons. As in the CRM case, the condition number of SWLSQ is mea-
sured against other two Least-Square methods. Then aerodynamic coefficients as well as com-
putation time is compared to show excellence of SWLSQ.

In general, second gradient at a cell is obtained by applying the gradient estimation methods
twice in a row. Thus, it is natural to guess that good first-gradient (or first-derivative) accuracy
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FIGURE 20. Condition number by three Least-Square methods at the prob-
lematic region

FIGURE 21. First gradient error by three Least-Square methods at the prob-
lematic region

FIGURE 22. Second gradient error by three Least-Square methods at the prob-
lematic region
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would lead to fair second-gradient (or second-derivative) accuracy. However, good condition
number (Fig. 20) and first-gradient accuracy (Fig. 21) of CWLSQ do not generate fine second-
gradient accuracy, as seen in Fig. 22. While it is true that SWLSQ somewhat succeeds in
helping second-gradient accuracy to be improved in the problematic space, this suggests that
additional research to figure out the relation between the condition number and the second
gradient is needed.

Numerical schemes and relevant flow conditions of this case are listed in Table 4. As pre-
dicted by the poor second gradient accuracy, CWLSQ fails to compute this flow problem. In
Fig. 23, it is confirmed that SWLSQ converges to a value within 1% of range from coefficients
of EWLSQ. Meanwhile, efficiency of SWLSQ is well presented via comparison of computa-
tion time in Table 5, where switching process ended up with saving about 32% of computation
time.

TABLE 3. Aerodynamic coefficients and computation time of SWLSQ and
EWLSQ in CRM case

Least-Square method SWLSQ EWLSQ Error [%]
CL 0.5042 0.5036 0.12
CD 0.0288 0.0287 0.35

Computation Time [sec] 37810 41613 -

TABLE 4. Summary of the flow simulation over the modern fighter

Simulation Information Value
Mach Number Transonic region

Angle of Attack high angle of attack
Reynolds Number O(106)

Flow Type Turbulent Flow
Turbulence model Menter’s k-w SST
Convective flux RoeM [11]

Time Integration Method Implicit Euler
Linear Algebra Method GMRES

TABLE 5. Summary of the flow simulation over the modern fighter

Least-Square method SWLSQ EWLSQ
CLerror [%] 0.64 -
CDerror [%] 0.60 -

Computation Time [hr] 68.18 99.59
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FIGURE 23. Convergence history of Least-Square methods about aerody-
namic coefficients

6. CONCLUSION

A switching Least-Square method is proposed by combining the advantages of CWLSQ and
EWLSQ. Firstly, four gradient estimation methods, two by Green-Gauss theorem and others by
Least-Square methods, are investigated on various test cases, leading to following conclusion:
1. Gradient by Green-Gauss theorem is basically inconsistent and should not be preferred
in general applications; 2. EWLSQ can give best gradient accuracy among the estimation
methods, but it grabs large number of stencils; 3. On particular instances, CWLSQ which
claims less number of stencils, can give as accurate result as EWLSQ with corresponding less
computation time.

Based on observation, an idea of switching between CWLSQ and EWLSQ is devised. For
consistent implementation on general types of grid, the condition number of the Least-Square
system, which shows close correlation with the gradient error, is chosen as the switching cri-
terion. Another merit of using the condition number is that it requires least amount of grid
information. Trigonometric functions and relations are applied to Least-Square matrix to show
the behavior of CWLSQ and EWLSQ, revealing the reason why EWLSQ tends to have low
condition number in general cases. Then, average condition number of the EWLSQ is adopted
as a threshold of the criterion.

Finally, the accuracy and efficiency of SWLSQ is compared with EWLSQ from simple
to complex applications, where CWLSQ mostly fails the computation. With respect to the
accuracy, it is shown that SWLSQ can produce as accurate result as EWLSQ on complicated
geometry. What’s more SWLSQ shows its strength regarding the efficiency in that it saves
computation time about 10 to 30% depending on the flow problem. Meanwhile, as for the
modern fighter configuration, it was found that accurate first-gradient does not guarantee the
accuracy of second-gradient, imparting the necessity of further research.
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