
J. KSIAM Vol.23, No.1, 31–38, 2019 http://dx.doi.org/10.12941/jksiam.2019.23.031

AN EXPLICIT NUMERICAL ALGORITHM FOR SURFACE RECONSTRUCTION
FROM UNORGANIZED POINTS USING GAUSSIAN FILTER

HYUNDONG KIM1, CHAEYOUNG LEE1, JAEHYUN LEE2, JAEYEON KIM2, TAEYOUNG YU2,
GENE CHUNG2, AND JUNSEOK KIM1†

1DEPARTMENT OF MATHEMATICS, KOREA UNIVERSITY, SEOUL 02841, REPUBLIC OF KOREA

E-mail address: cfdkim@korea.ac.kr

2SEOUL SCIENCE HIGH SCHOOL, SEOUL 03066, REPUBLIC OF KOREA

ABSTRACT. We present an explicit numerical algorithm for surface reconstruction from unor-
ganized points using the Gaussian filter. We construct a surface from unorganized points and
solve the modified heat equation coupled with a fidelity term which keeps the given points.
We apply the operator splitting method. First, instead of solving the diffusion term, we use
the Gaussian filter which has the effect of diffusion. Next, we solve the fidelity term by using
the fully implicit scheme. To investigate the proposed algorithm, we perform computational
experiments and observe good results.

1. INTRODUCTION

An important work in the surface reconstruction process is to preserve the original image
and achieve the suitable smoothing effect. There are a number of papers that have performed
the surface smoothing, the image processing, the surface or volume reconstruction by applying
various techniques such as Gaussian smoothing [1], spherical diffusion [2], anisotropic diffu-
sion [3], non-iterative feature preserving filtering [4], minimizing total variation [5, 6], level-set
method [7], embedding narrow band [8, 9], and phase-field method [10].

The following model is used for removing noise from given images, which based on mini-
mizing total variation of image [11]:

∂ϕ

∂t
= ∇ ·

(
∇ϕ

|∇ϕ|

)
+ λ(f(x)− ϕ), x ∈ Ω, t > 0, (1.1)

where ϕ(x, t) is an image to be restored in a domain Ω, f(x) is the original image, and λ is a
nonzero Lagrange multiplier.

In Eq. (1.1), since the term ∇· (∇ϕ/|∇ϕ|) describes the effect of diffusion, we equivalently
consider the following evolutionary governing equation:

∂ϕ(x, t)

∂t
= ∆ϕ(x, t) + λ(f(x)− ϕ(x, t)), x ∈ Ω, (1.2)
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where ϕ(x, t) is the phase-field, f(x) is the original data set, and λ is the fidelity parameter.
We define ϕ = 1 on the points in the domain Ω and ϕ = −1 otherwise. Assuming that the
reconstructed surface is sufficiently away from the boundary, the Dirichlet boundary condition,
ϕ = −1, can be used [12].

The main purpose of this article is to present an explicit numerical algorithm for surface
reconstruction from unorganized points by using the Gaussian filter.

This article is organized the following manner. In Section 2, we describe a mathematical
configuration and numerical solution algorithm using the Gaussian filter. To investigate the
proposed algorithm, we perform computational experiments in Section 3. Conclusions are
derived in Section 4.

2. MATHEMATICAL CONFIGURATION AND NUMERICAL SOLUTION ALGORITHM

In this section, we present an explicit numerical algorithm for surface reconstruction from
unorganized points using the Gaussian filter. Let the computational domain Ω be (a, b) ×
(c, d)× (e, f), the number of grid points Nx, Ny, and Nz be positive integers, and the uniform
grid size h be (b − a)/(Nx − 1) = (d − c)/(Ny − 1) = (f − d)/(Nz − 1). We define a
discrete domain Ωh = {x = (xi, yj , zk) : xi = a + (i − 0.5)h, yj = c + (j − 0.5)h, zk =
e + (k − 0.5)h, 1 ≤ i ≤ Nx, 1 ≤ j ≤ Ny, 1 ≤ k ≤ Nz}. The notation ϕ(xi, yj , zk, n∆t)
is simply denoted by ϕn

ijk, where ∆t is the temporal step size. By using the operator splitting
method, we split the diffusion term and fidelity term of Eq. (1.2) into the following equations:

∂ϕ

∂t
= ∆ϕ, (2.1)

∂ϕ

∂t
= λ(f(x)− ϕ). (2.2)

When solving Eq. (1.2), we can replace the diffusion Eq. (2.1) using a Gaussian function [1].
For the sake of clarity, we first explain the function in two-dimensional space:

G(x, y) =
1

2πσ2
e−

x2+y2

2σ2 ,

where σ is the standard deviation of distribution. Figure 1 shows a graphical representation
of two-dimensional Gaussian function with σ = 1.0, which resembles a bell shape. As the

0
22

0.1

0 0

0.2

-2-2

FIGURE 1. Two-dimensional Gaussian function with σ = 1.0.
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first step to find the numerical solution, instead of solving the diffusion Eq. (2.1), we use the
numerical convolution [13] G ∗ ϕ0

ij with an initial condition ϕ0
ij .

Now, we consider (m×m) smoothing kernel. Here, m is an odd integer greater than 2. We
define Wpq = G((p − (m + 1)/2)h, (q − (m + 1)/2)h) for 1 ≤ p, q ≤ m. In general, the

value of sum of weighting coefficients holds
m∑
p=1

m∑
q=1

Wpq ̸= 1. Therefore, we normalize the

weighting coefficients to make the value of sum equal to be 1, i.e., wpq = Wpq/
m∑
i=1

m∑
j=1

Wij .

Figure 2 shows that the shape of wpq is smoother as the value of σ increases when m = 3.

(a) (b) (c)

FIGURE 2. When m = 3, (a), (b), and (c) are the graphical representations of
Gaussian filter with σ = 0.5, 1.0, and 1.5, respectively.

The solution of Eq. (2.1) obtained by using the Gaussian filter is as follows:

ϕ∗
ij =

m∑
p=1

m∑
q=1

wpqϕ
n
i−m+1

2
+p,j−m+1

2
+q

, 1 ≤ i ≤ Nx, 1 ≤ j ≤ Ny, (2.3)

which has the effect of diffusion.
When m = 3, Fig. 3 illustrates the stencil of ϕi−(m+1)/2+p,j−(m+1)/2+q and normalized

weighting coefficient wpq for 1 ≤ p, q ≤ m. Similarly to the two-dimensional Gaussian
function, the three-dimensional Gaussian function is expressed as

G(x, y, z) =
1

(
√
2πσ)3

e−
x2+y2+z2

2σ2 .

For 1 ≤ i ≤ Nx, 1 ≤ j ≤ Ny, 1 ≤ k ≤ Nz , we can extend the two-dimensional numerical
solution ϕ∗

ij in Eq. (2.3) to the following three-dimensional numerical solution ϕ∗
ijk:

ϕ∗
ijk =

m∑
p=1

m∑
q=1

m∑
r=1

wpqrϕ
n
i−m+1

2
+p,j−m+1

2
+q,k−m+1

2
+r

. (2.4)

Figure 4 illustrates stencil of ϕi−2+p,j−2+q,k−2+r and normalized weighting coefficient wpqr.
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FIGURE 3. Schematic illustration of ϕi−2+p,j−2+q and normalized weighting
coefficient wpq for 1 ≤ p, q ≤ 3.
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FIGURE 4. Schematic illustration of ϕi−2+p,j−2+q,k−2+r and normalized
weighting coefficient wpqr for 1 ≤ p, q, r ≤ 3.

As the second step, we solve Eq. (2.2) by using the fully implicit scheme:

ϕn+1
ijk − ϕ∗

ijk

∆t
= λ(f − ϕn+1

ijk ). (2.5)

To simplify the representation, we take θ = 1/(1 + ∆tλ). Then Eq. (2.5) is given as

ϕn+1
ijk = θϕ∗

ijk + (1− θ)f, 0 < θ < 1

Since f is the initial data ϕ0
ijk, we can straightforwardly find the numerical solution as follows:

ϕn+1
ijk = θϕ∗

ijk + (1− θ)ϕ0
ijk. (2.6)

As a consequence, an explicit numerical algorithm consists of Eqs. (2.4) and (2.6).
Therefore, the implicit numerical solver such as multigrid solver is not needed to find the
numerical solution. Also, the execution of the algorithm is fast.
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3. COMPUTATIONAL EXPERIMENTS

In this section, we perform numerical tests using the proposed numerical method. Figure 5
shows surface reconstruction of the Stanford bunny [14] on the domain Ω = (0, 1) × (0, 1) ×
(0, 1). We take the following computational parameters: Nx = Ny = Nz = 60, h = 1/60,
∆t = h2, σ = h, and λ = 700. From left to right, the given unorganized points set, initial
reconstruction, and the numerical results after 5 iterations.

(a) (b) (c)

FIGURE 5. Surface reconstruction of bunny: (a) the given points set, (b) initial
reconstruction, and (c) the numerical results after 5 iterations, respectively.

3.1. Effect of smoothing kernel. On the three-dimensional space Ω = (0, 1) × (0, 1.5) ×
(0, 1), we simulate the effect of smoothing kernel. The initial data is set to the Stanford dragon
model [14]. We take the following computational parameters: Nx = 120, Ny = 180, Nz =

120, h = 1/120, ∆t = 0.05h, σ = 2h/
√
3, and λ = 3000. Figure 6(a) shows the initial

condition. At the final time T = 5∆t, the results of 3× 3× 3 and 5× 5× 5 smoothing kernel
are shown in Fig. 6(b) and (c), respectively. We can see that 5 × 5 × 5 smoothing kernel are
smoother than 3 × 3 × 3 smoothing kernel. It means that the initial data is lost. Therefore,
all computational experiments shall use the Gaussian filter computed by 3 × 3 × 3 smoothing
kernel, from now on.

3.2. Effect of standard deviation σ. In this section, we confirm the effects of the standard
deviation σ on the three-variable Gaussian filter dynamics. The initial data is taken from the
Stanford bunny model. We can observe the shape of the model at time T = 5∆t with respect
to different standard deviations. In Fig. 7, the parameters are given as Nx = 120, Ny = 180,
Nz = 120, h = 0.0147, ∆t = 0.05h, λ = 0, and Ω = (0, 1) × (0, 1.5) × (0, 1). As shown
in Fig. 7, when the standard deviation of the given Gaussian filter is small, it is seen that the
resulting surface closely resembles the initial model. On the other hand, when the standard
deviation of the filter becomes larger, the resulting surface is smoother. Thus, the standard
deviation of the filter must be set to an appropriate value for each set of initial data.
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(a) (b) (c) (d)

FIGURE 6. Right and left views of Stanford dragon: (a) initial point set, (b)
initial condition (c) 3×3×3, and (d) 5×5×5 smoothing kernel, respectively.

(a) (b) (c) (d)

FIGURE 7. The graphical views of Stanford bunny: (a) shows the initial con-
dition and (b), (c), and (d) are the numerical results with σ = 0.01h, h, and
100h, respectively.

3.3. Effect of parameter λ. From now on, we investigate the effect of parameter λ on the
three-variable Gaussian filter dynamics. The initial condition is used as Stanford bunny and
dragon model. We can observe the shape of model at the total time T = 5∆t with respect to
different values of λ. The common performance parameters are taken as following: Nx = 120,
Ny = 180, Nz = 120, ∆t = 0.05h, σ = 2h/

√
3, and Ω = (0, 1) × (0, 1.5) × (0, 1), where

h = 0.01 in Fig. 8 and h = 0.0147 in Fig. 9. As shown in Fig. 8, 9, when the value of
parameter λ is small, we can see that the result is oversmoothing by the Gaussian filter with a
sufficiently large standard deviation σ. Meanwhile, if the value of parameter λ is large, then
the results are rougher, which seems like an initial condition. Therefore, λ must be set to a
suitable value for each given initial data.
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(a) (b) (c) (d)

FIGURE 8. The graphical views of Stanford dragon: (a) shows the initial con-
dition and (b), (c), and (d) are the numerical results with λ = 1, 1000, and
10000, respectively.

(a) (b) (c) (d)

FIGURE 9. The graphical views of Stanford bunny: (a) shows the initial con-
dition and (b), (c), and (d) are the numerical results with λ = 1, 1000, and
10000, respectively.

4. CONCLUSION

In this article, we presented an explicit numerical algorithm for surface reconstruction from
unorganized points by using the Gaussian filter. We have investigated the diffusion effect of the
Gaussian filter through the computational experiments and observed the numerical results. The
proposed algorithm can be utilized in many aspects of industry, such as the three-dimensional
structure printing from scattered scanned data.
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