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ABSTRACT 

 
A high-order implicit discontinuous Galerkin flow solver for the two-dimensional Euler 

equations was developed on unstructured triangular meshes. Numerical tests for the 
supersonic vortex flow were conducted to estimate the convergence order of numerical 
solutions and to assess the effect of high-order representation of curved solid boundaries in 
discontinuous Galerkin methods. The flow around a 2-D circular cylinder was also 
numerically simulated for the demonstration of the efficiency of the high-order implicit 
discontinuous Galerkin method in obtaining steady state solutions. The numerical results 
showed that the implicit discontinuous Galerkin methods with a high-order representation of 
curved solid boundaries can be an efficient method to obtain very accurate numerical 
solutions on unstructured meshes. 
 

INTRODUCTION 
 

Recently, discontinuous Galerkin method(DGM) has experienced a resurgence of interest 
in various disciplines of numerical simulations on unstructured meshes[1]. DGM has 
advantageous features from both finite-element and finite-volume methods. In the case of 
DGM, high-order accuracy is achieved by increasing the degree of approximating 
polynomials without relying on extended stencils as in the classical finite-volume methods. 
Since the approximate solutions are represented by element-wise polynomials without inter-
element continuity restriction, numerical flux schemes originally developed for finite-volume 
methods are used to determine unique flux values at elemental boundaries. Also, DGM 
maintains the compactness, regardless of the order of accuracy, because the required stencil is 
confined only to the neighbors of elemental boundaries. Owing to this favorable property, 
DGM is highly parallelizable and easily handles adaptive mesh strategies. 

The DGM was originally considered by Reed and Hill[2] to solve a neutron transport 
problem and extended by Cockburn and Shu[3] for the nonlinear systems of hyperbolic 
conservation laws. They developed the Runge-Kutta discontinuous Galerkin method based on 
method of lines, in which the governing equations are first discretized for spatial variables by 
using DGM, then the semi-discrete ordinary differential equations are integrated in time with 
the aid of a TVD Runge-Kutta method. Even though the explicit Runge-Kutta Discontinuous 
Galerkin method has been widely used to obtain steady state solutions, the rate of 
convergence to steady solutions may become dramatically slow for large-scale simulations 
due to the fact that CFL stability condition is severely restricted as the degree of 
approximation polynomials increases and/or the mesh is refined. One way to overcome this 
difficulty is to use an implicit time integration method which has essentially no stability 
limitation. 
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In the present study, a high-order implicit discontinuous Galerkin flow solver for the two-
dimensional Euler equations has been developed on unstructured meshes. The flow solver 
adopted a fully implicit method based on Euler backward differencing and linearization of the 
residuals to obtain steady solutions effectively. Two numerical tests are to be presented, 
which were selected to estimate the accuracy of numerical solutions and to assess the 
efficiency of the high-order implicit discontinuous Galerkin method in obtaining steady state 
solutions. 
 

NUMERICAL METHODS 
 

The governing equations in the present study are the two-dimensional Euler equations for 
compressible inviscid flows, which can be expressed in a conservative form as 
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where 2RΩ∈ is an open domain with boundary ∂Ω ⊂ Ω . Also, U  and { }1 2,=F F F
G

 represent the 
vector of conservative flow variables and inviscid Euler fluxes, respectively. 

To obtain a weak form of the governing equations, the conservation laws in Eq. (1) are 
multiplied by an arbitrary smooth function W  and integrated by parts over the domain Ω : 
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where n  denotes the outward unit normal vector to the boundary. 
To discretize Eq. (2), both analytical solution U  and arbitrary test function W  are replaced 

by Galerkin finite-element approximation hU  and hW , respectively, which belong to the 
finite-element space p

hV  defined by 
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where ( )pP K  is a discontinuous piecewise polynomial space of degree p  defined on each 
element K . Then hU  and hW  can be expressed as 
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where dofN  is the number of degree of freedoms to represent the approximate solution in a 
form of truncated polynomial expansions and is given by ( )( )1 2 / 2k k+ +  for two-dimensional 
elements. Since the approximate solution hU  is discontinuous across the element interfaces, 
the inviscid flux Tn F

G
 has to be replaced by a numerical flux ( ), ,h h

− +H U U n , which depends on 
both inner and outer traces of hU  on K∂  and the unit outward normal vector n  to the 
elemental boundary. In the present study, the numerical flux of Roe[4] originally developed 
for finite-volume methods was adopted. The discontinuous Galerkin formulation of the 
governing equations can be expressed for an arbitrary element K  as follows: 
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By introducing the polynomial expansions for hU  and hW  as in Eq. (4) into Eq. (5), a set of 
equations for the coefficients ˆ

jlU  is obtained: 
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where { }, 1, , 4i j = …  represent indices of the four Euler equations in two dimensions, and 
{ }, 1, , dofl m N= …  denote indices of the basis functions and the coefficients of the truncated 

polynomial expansions. Eq. (6) can be rewritten as follows: 
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Here, −  and +  denote the quantities inside and outside of K . This scheme is called as a 
discontinuous Galerkin method of degree p , or ‘DG( p ) method’, which has an order of 
accuracy of 1p + [5]. 

Once spatial discretization is completed, a set of ordinary differential equations is obtained 
as in Eq. (7). These ordinary differential equations can be integrated in time by using either 
explicit or implicit methods. In the present study, a fully implicit method based on the 
backward Euler time integration was applied to Eq. (7) as 
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The right-hand side is now linearized by using the Taylor expansion as 
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where ÛΔ  indicates 1ˆ ˆn nU U+ − . The Jacobians of ilR  to ˆ
jmU  can be derived from Eq. (8) as  
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Then, Eq. (7) becomes 
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which can be rewritten in a matrix form for all elements in the mesh: 
Δ =A U R  (13)

where the coefficient matrix A  is a very sparse block matrix which is consisted of one 
diagonal block and three off-diagonal blocks for a triangular element. Each block is a square 
matrix having 4 4dof dofN N×  entities. The linear system of equations is solved at each time step 
by using a point Gauss-Seidel method. 
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NUMERICAL RESULTS 

 
Numerical tests for two smooth flows were conducted to estimate the convergence order of 

numerical solutions and to assess the efficiency of the present high-order implicit 
discontinuous Galerkin method in obtaining steady solution. The first test was made for an 
inviscid, isentropic, supersonic flow in a quarter-circular annulus[6], where analytic solutions 
are available. The inner and outer radii were taken to be 2 and 3, respectively, and the Mach 
number at the inner radius was set to 2.0. The radial velocity of the flow is inversely 
proportional to radius and the density is given by 

1
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2
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 (14)

where, iM  and ir  denote Mach number and radius at the inner boundary. 
 Four unstructured meshes containing 230, 908, 3628, 14513 triangular elements were used 

for the computations. Figure 1 shows L2 norm of numerical errors in density with respect to 
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the grid size depending on the types of boundary approximation. The grid size is represented 
by using the square root of number of elements. First, calculations with exact boundary 
conditions were made to remove the effect of boundary conditions and the estimated order of 
accuracy is shown in Figure 1(a). It can be observed that the optimal order of error 
convergence, 1p +  for DG( p ) method, was achieved by using the present implicit 
discontinuous Galerkin solver. Next, numerical tests with imposing the slip boundary 
condition to the curved solid walls at the inner and outer radii were conducted. The order of 
accuracy was measured for the approximation of the curved boundaries by employing 
piecewise linear through quartic polynomials. The estimated orders of accuracy are shown in 
Figure 1 (b) to (d). For DG(0) method, the optimal order of accuracy was obtained regardless 
of the degree of polynomials, Q, for the curved boundary approximation. As indicated by 
Bassi and Rebay[7], however, it was observed that the linear approximation of the curved 
boundaries(Q=1) leads to dramatic loss of accuracy and even to unphysical solutions for high-
order DG methods as shown in Figure 2. When the quadratic boundary approximation was 
used for the curved boundaries(Q=2), the optimum order of accuracy was achieved up to the 
DG(2) method. For the case of cubic polynomial approximation(Q=3), the estimated order of 
accuracy was similar to the case of quadratic approximation. To obtain optimum accuracy up 
to the DG(4) method, it was necessary that a quartic polynomial approximation be used in the 
present study. 

 Residual convergence histories from initial conditions to the steady state solutions are 
shown in Figure 3. For a given mesh, the rates of residual convergence are similar regardless 
of accuracy due to the fact that the Jacobians for the implicit time integration were determined 
with the same accuracy as residuals. Figure 4 shows elapsed computational time and density 
errors of the steady solutions which were obtained by converging the residuals to machine 
zero. It is clearly indicated that higher-order implicit DG methods are more efficient to 
achieve a given level of errors for the steady flow computations. 
 The second test case was a subsonic flow around a circular cylinder at a Mach number of 0.3. 
Steady computations were made on two unstructured meshes containing 352 and 1272 
triangular elements. On the two meshes, the circular cylinder was enclosed with 12 and 24 
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curved triangular elements approximated by piecewise quadratic polynomials. Figure 5 
represents Mach contours and elapsed CPU time for DG(1) through DG(3) calculations on 
two unstructured meshes. For the lower-order calculations on the coarser mesh, unphysical 
wakes were produced due to the inherent dissipation of the numerical methods. This wakes 
were reduced as the order of accuracy increased and the mesh was refined. And it was also 
found that higher-order DG methods are more efficient in terms of computational time needed 
for achieving the same level of accuracy in numerical solutions. The accuracy of the present 
method could also be verified by comparing the distributions of pressure coefficient and total 
pressure obtained on the coarse mesh for DG(1) through DG(3) computations as shown in 
Figure 6. It shows that the pressure at the rear of the cylinder is recovered and the loss of total 
pressure decreases drastically as the order of accuracy increases. 
 

CONCLUSIONS 
 

A high-order implicit discontinuous Galerkin flow solver for the two-dimensional Euler 
equations has been developed on unstructured triangular meshes. The flow solver adopted a 
fully implicit method based on Euler backward differencing and linearization of the residuals 
to obtain steady solutions effectively. Numerical tests for the supersonic vortex flow were 
conducted to estimate the accuracy of numerical solutions and to assess the effect of high-
order representation of curved solid boundaries in discontinuous Galerkin methods. The flow 
around a 2-D circular cylinder was also numerically simulated for the demonstration of the 
efficiency of the high-order implicit discontinuous Galerkin method in obtaining steady state 
solutions. The numerical results showed that the implicit discontinuous Galerkin methods 
with a high-order representation of curved solid boundaries can be an effective method to 
obtain very accurate numerical solutions on unstructured meshes. 
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