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We study the temporal accuracy and stability of the velocity-components decoupled projec-
tion method (VDPM) for fully discrete incompressible Navier—Stokes equations. In particular,
we investigate the effect of three formulations of the nonlinear convection term, which include
the advective, skew-symmetric, and divergence forms, on the temporal accuracy and stability.
Second-order temporal accuracy of the VDPM for both velocity and pressure is verified by
establishing global error estimates in terms of a discrete /2-norm. Considering the energy evo-
lution, we demonstrate that the VDPM is stable when the time step is less than or equal to a
constant. Stability diagrams, which display the distributions of the maximum magnitude of the
eigenvalues of the corresponding amplification matrices, are obtained using von Neumann anal-
ysis. These diagrams indicate that the advective form is more stable than the other formulations
of the nonlinear convection term. Numerical tests are performed in order to support the mathe-
matical findings involving temporal accuracy and stability, and the effects of the formulations of
the nonlinear convection term are analyzed. Overall, our results indicate that the VDPM along
with an advective discrete convection operator is almost unconditionally stable, second-order
accurate in time, and computationally efficient because of the non-iterative solution procedure
in solving the decoupled momentum equations.

1 BASIC PRINCIPLE OF THE PROJECTION METHOD

We consider incompressible viscous flow in a bounded domain € in R? with boundary 9
over a finite time interval [0, 7"]. The time-dependent Navier-Stokes equations and continuity
equation for incompressible viscous flows are:
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and are subject to suitable boundary conditions on 92. Here, u = (uy, us, u3)” denotes velocity,
p indicates pressure, Re is the Reynolds number, and c(-, -) represents the continuous nonlinear
convection operator. In this paper, we consider three formulations of the nonlinear convection
term cg(u, u) in the momentum equation. The formulations can be defined as
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in which ¢o(-,-), c1/2(+,+), and ¢;(-,-) represent advective, skew-symmetric, and divergence
forms, respectively, x; are the Cartesian coordinates, and the subscripts denote direction.



We use a staggered MAC mesh for spatial discretization:
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where discrete operators Cg, £, G, and D are defined for convection, Laplacian, gradient, and
divergence operators, respectively. Three discrete convection operators, such as Cy, Cy /2, and
Ci, are considered based on the respective advective, skew-symmetric, and divergence forms
of the continuous convection operator in (3). The corresponding discrete operators for u” and
v" € H'(Q,)? can be defined as

Cs(u",v") :=(1—-p)u"-Gv"+ D (u" ®v") for  =0,1/2,and 1. (6)

For simplicity, we introduce discrete operator A/ for the linearized form of the nonlinear con-
vection term:
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The complete procedure of the projection method presented by Kim et al. [1] can be sum-
marized as follows:
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in which A = (T + AN — 55L)), " = Lu” + 5 Lu™ — Gp" /2, and op" /2 =
p" /2 — pn=1/2 Note that r” only relates to the information at the previous time level. Here
u*""! denotes the intermediate velocity, Z is the identity matrix, and Ju*"™! = u*"*1 — u,

Because the intermediate velocity components are coupled, we must use an iterative procedure
in order to solve du*"*! in (8). The corresponding system matrix, .4, is given by
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in which M;(i,j = 1,2,3) is a sub-matrix of M(-) = N'(-) — 55-L(-). The entire procedure

(8)—(12) is called the velocity-components coupled projection method (VCPM).

In order to avoid the iterative procedure in (8), we apply a block LU decomposition along
with approximate factorization technique to A for decoupling the velocity difference du*"*1,
which produces the VDPM. Here, we define the numerical solutions u}™* € H'(;,)? and

P2 e H(,) of the VDPM at (n + 1)At with intermediate velocity, u;"+' = (ugt™



,u;g“, uZ:g’Ll)T € H'(Q)3, in order to distinguish the numerical solutions obtained from the

VCPM and VDPM. Here, H'(;,) denotes the space of functions:
H' (%) = {x: [9xllq, < oo} (14)

where y is an edge-centered or cell-centered function in domain €2;,. The discrete />-norm || ||,
corresponds to a discrete inner product:

M
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m=1
where u = (uy, -+ ,up)’, v = (vy,--+ ,vy)T, and : represents the Frobenius inner prod-
uct. Note that the functions w,, and v,, (m = 1,---, M) are edge-centered or cell centered.

Accordingly, we have
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where NVy(uj™) = $(Ca(uy, uj™) + Cs(ujj', uj)). Applying the block LU decomposition
along with approximate factorization and approximate factorization for each direction enable

us to solve (8)—(12) efficiently.

2 TEMPORAL ORDER OF ACCURACY

Some hypotheses are needed to proceed.

e (H1), we assume a uniform boundedness within a finite time. If we consider the process up
to time 7', we can assume that [|[u”||q, < C and ||p"~'/?||q, < C for nAt < T. Here, C'is a
given constant.

e (H2), we assume Cgs is a Lipschitz operator with constant C¢,. Therefore, given uniform
bounded |[ulq,, [[Vlle,, [luille,,and |[usflq,, there exists a constant Ce, > 0 such that

ICs (v, w1) = Cp (w, 1), < ey [[V]]g, (w1 = wallg, + Co, [luaflg, [lu—vig, A7)

where u, v,u;, vi € H'(,)3.
e (H3), we assume L is a Lipschitz operator with constant C. In other words, given uniform
bounded ||u; ||, and ||uz||q,, there exists a constant Cz > 0 such that

[Lur — Lusllg, < Cp [lug —asllg, (18)

where u;, uy € H'(Q,)3.
Note that for any operator H: H'(£2;,)> — R3, we define
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Let us define the numerical solutions of the Crank—Nicolson method, (4) along with (5), at
time (n + 1)At to be v € H' ()% and ¢"+/2 € H'(£2,). These also satisfy the uniform
boundedness hypothesis given at the beginning of this section. Our goal is to evaluate the global



error of the VCPM solutions that are approximated to Crank—Nicolson solutions. Therefore, we
define the differences between the VCPM solutions and the Crank—Nicolson solutions using
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Theorem 4. We assume that mbc™ ™% and cbc™™ for all n have bounded discrete second-
order derivatives. Under the hypotheses (HI)—(H3), global error estimates for velocity and
pressure yield to second-order temporal accuracy:
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Theorem 6. If we assume the same hypothesis as in Theorem 4, the VDPM solutions converge
to the VCPM solutions with second-order temporal accuracy under the same initial conditions:
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for alln.

Theorems 4 and 6 along with the triangle inequality ensure that the VDPM solutions are
second-order accurate in time with respect to the Crank—Nicolson solutions. Because the Crank—
Nicolson method is considered to be a second-order temporal accurate method, we can conclude
that the VDPM and the VCPM solutions are O(At#?) of the exact solutions in a discrete [?-norm,
regardless of the formulation of the nonlinear convection term.

3 STABILITY ANALYSIS

In this paper, we assume homogenous Dirichlet or periodic boundary conditions for veloci-
ty. Therefore, mbc" /2 and cbe™t in (4) and (5), respectively, are identically zero. Divergence-
free velocity fields are assumed to be orthogonal to the gradient fields, which may have limita-
tions on the boundary conditions. Furthermore, £ and G are commutative.

3.1 Energy estimation

Theorem 9. Under the hypotheses (HI)—(H3), for the VCPM, there exist constants T € R and
B € R such that
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when At < 7 for all n. Here, E™™ = L(u™™ u"™)q, denotes the kinetic energy at time level
n+ 1.

Theorem 10. Under the hypotheses (H1)—(H3), for the VDPM, there exist constants 74 € R
and B, € R such that

n
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when I\t < 74 for all n. Here, Ei™' = L(ulit! ul™1)q, is the kinetic energy at time level n+1.
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3.2 von Neumann analysis

We apply the von Neumann analysis to the linearized Navier—Stokes equations in order
to obtain stability diagrams that represent the distributions of the maximum magnitude of the
eigenvalues of the corresponding amplification matrices.
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Figure 1. Distributions of the maximum magnitude of eigenvalues,
with different discrete convection operators.
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Figure 2. Distributions of the maximum magnitude of eigenvalues, | Aj|max, for the VDPM along
with different discrete convection operators.

4 NUMERICAL TESTS
In order to examine and compare the numerical performances of the VCPM and VDPM, as

well as the semi-implicit projection method (SIPM), we consider two problems: 2D lid-driven
cavity flow and periodic forced flow, which has an analytical solution.

S CONCLUSION

We presented a mathematical study of the temporal accuracy and stability of the velocity-
components decoupled projection method (VDPM) based on the time-dependent incompress-
ible Navier—Stokes equations. We proved that decoupling procedures, such as pressure-velocity



decoupling and velocity-components decoupling, and approximated factorization procedure do
not degrade the temporal accuracy. Regardless of the formulation of the nonlinear convection
term, second-order accuracy of both the VCPM and VDPM in time has been achieved for both
velocity and pressure. Furthermore, we analyzed the stability properties of the VCPM and VDP-
M using energy estimation and the von Neumann analysis that is based on fully discrete Navier—
Stokes equations and linearized Navier—Stokes equations, respectively. The energy estimation
indicated that both the VCPM and VDPM are stable for sufficiently small time steps, indepen-
dent of the formulation of the nonlinear convection term. In addition, applying the von Neumann
analysis based on linearized Navier—Stokes equations overcame the difficulties associated with
the nonlinear convection term. This analysis produced stability diagrams for the stable region
parameterized by the maximum magnitude of the eigenvalues of the amplification matrices. We
found that the VCPM is unconditionally stable, and the eigenvalues for both the VCPM and
VDPM along with Cy are smaller than those that use other discrete convection operators.

Numerical tests performed on the 2D lid-driven cavity flow also demonstrated that the VCP-
M is almost unconditionally stable and the VDPM along with C, allows for a fairly large CFL
number (CFL = 20), indicating that the steady-state velocity distributions, as well as the time
history of the velocity, agree well with references. Results for the periodic forced flow validated
that both the VCPM and VDPM are second-order accurate in time, which coincides with the
mathematical discussion. The computational performances of the projection methods indicate
that both the VCPM and VDPM are more stable and accurate than the SIPM, and the computa-
tion time of the VDPM is more than 10 times shorter than that of the VCPM. In summary, the
VDPM along with advective convection operator C, is the most efficient projection method. It
provides almost unconditionally stable and second-order temporal accurate numerical solutions
with a computation time comparable to the SIPM.
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