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ABSTRACT. We present families of nonlinear transformations useful for numerical evaluation
of weakly singular integrals. First, for end-point singular integrals, we define a prototype func-
tion with some appropriate features and then suggest a family of transformations. In addition,
for interior-point singular integrals, we develop a family of nonlinear transformations based on
the aforementioned prototype function. We take some examples to explore the efficiency of the
proposed nonlinear transformations in using the Gauss-Legendre quadrature rule. From the nu-
merical results, we can find the superiority of the proposed transformations compared to some
existing transformations, especially for the integrals with high singularity strength.

1. INTRODUCTION

In this paper, we consider evaluation of weakly singular integrals which are important for
implementing numerical schemes in many areas of engineering such as elastostatics, fluid dy-
namics and material engineering [1, 2, 3].

There are lots of methods for numerical evaluation of weakly singular integrals, and among
them, the coordinate transformation methods are known to be outstanding due to their ease of
use in adaptive approaches. The literature [4, 5, 6] introduced ad hoc coordinate transforma-
tions to remove the singularity of the integrand. Telles[7] provided a self-adaptive co-ordinate
transformation which is efficient for general boundary element method. Sigmoidal transfor-
mations, known to be very useful for the coordinate transformation method, are systematically
classified in the literature [8, 9, 10, 11, 12]. In addition, in [13, 14], we can find somewhat
elaborated transformations and their availability for the interior-point singular integrals.

Specifically, for the end-point weakly singular integral whose integrand behaves like O ((1− x)κ)
near x = 1 (−1 < κ < 0), the following Sato-polynomial transform [6] is known to be promi-
nent.

ΦSat
m (x) = 1− (1− x)m

2m−1
, −1 ≤ x ≤ 1, (1.1)
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for an integer m ≥ 2. On the other hand, for the interior-point weakly singular integral whose
integrand behaves like O ((s0 − x)κ) near x = s0 (−1 < s0 < 1), we recall well-known
Monegato-Sloan transformation [13] ΨMS

m as follows.

ΨMS
m (x) = s0 + δ0 · (x− η0)

m, −1 ≤ x ≤ 1, (1.2)

where

δ0 = 2−m
{
(1 + s0)

1
m + (1− s0)

1
m

}m
, η0 =

(1 + s0)
1
m − (1− s0)

1
m

(1 + s0)
1
m + (1− s0)

1
m

. (1.3)

Additionally, we recall the generalized sigmoidal transformation [14] defined as

ΨSGM
m (x) = s0 + 2Sgn(x− ξ0)γm

(
|x− ξ0|

2

)
, (1.4)

where γm(t), 0 ≤ t ≤ 1, is a sigmoidal transformation of order m and ξ0 = 2γ−1
m

(
1+s0
2

)
− 1.

These transformations are useful for most weakly singular integrals, except when the strength
of singularity is very high(that is, κ near −1). In a recent work [15], the author introduced
other efficient but rather complicated rational transformations with parameters depending on
the type of singularity and the location of the singular point. The transformations have the
annoying problem of determining appropriate range of the parameters.

We, in this study, propose new nonlinear transformations for end-point and interior-point
weakly singular integrals, respectively, with the goal of higher accuracy of the numerical inte-
gration. We also focus on the simplicity and the versatility of the transformations, regardless of
the singularity strength −1 < κ < 0. The usefulness of the proposed transformation method is
investigated through numerical examples for each type of the weakly singular integral.

In Section 2, we define a so-called prototype function ϕm(x), −1 ≤ x ≤ 1, of order m sat-
isfying some reasonable features. Several basic examples of ϕm(x) are introduced. Then, for
end-point weakly singular integrals, we suggest a family of nonlinear transformations Φm(x),
associated with ϕm(x), that are bijective over the integration interval [−1, 1] and weaken the
singularity of the integrand for any integer m ≥ 2. This family contains the Sato-polynomial
transform, in the special case of ϕm(x) = xm. We also introduce a nonlinear transformation
Gδ(x) associated with another prototype function g(δ;x) defined in (2.6).

In Section 3, for interior-point weakly singular integrals, we propose a family of nonlinear
transformations Ψm(x) based on the prototype function ϕm(x) that shift any singular point s0
to the midpoint 0. Moreover, we derive the appropriate range of m with which the transforma-
tions become bijective over the interval [−1, 1] according to the singular point s0. A nonlinear
transformation Hδ(x) based on the prototype function g(δ;x) is proposed, in addition.

In the last section, for some examples of the weakly singular integrals, we show that the pro-
posed transformations accompanying the standard Gauss-Legendre quadrature rule are compa-
rable to well-known existing transformations. Particularly, in the case of κ close to −1, it can
be seen that proposed transformations Gδ(x) and Hδ(x) result in much better approximation
errors compared to the existing transformations.
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2. END-POINT SINGULAR INTEGRALS

We consider the end-point singular integral such as∫ 1

−1
(1− ξ)κh(ξ) dξ , −1 < κ < 0. (2.1)

For an integer m ≥ 2 we denote by ϕm a function which is defined on the interval −1 ≤ x ≤ 1
and satisfies the following properties.

(P1) ϕm ∈ C∞[0, 1] and it has an asymptotic behavior of O (xm) near the point x = 0.
(P2) ϕm is strictly increasing over the interval [0, 1] with

ϕm(0) = 0, ϕm(1) = 1

(P3) ϕm is an odd or even function over the interval [−1, 1] according to m.
The property (P3) is required for the interior-point singular integrals considered in the next
section.

Then, we define a new transformation

Φm(x) := 1 − 2ϕm

(
1− x

2

)
, −1 ≤ x ≤ 1, (2.2)

which has the following properties.

Lemma 2.1. For any integer m ≥ 2, Φm is strictly increasing over the interval −1 ≤ x ≤ 1
with

Φm(−1) = −1, Φm(1) = 1

and its asymptotic behavior near the end-point x = 1 is

Φm(x) = 1 + O ((1− x)m) .

Proof. The proof is straightforward from the definition of Φm and the properties (P1) and (P2).
□

If we set ξ = Φm(x) in (2.1), the original singularity O ((1− ξ)κ) of the integrand is weakened
as O

(
(1− x)(1+κ)m−1

)
for every m ≥ 2.

For example, we propose some basic types of the function ϕm and the related function Φm

as follows.
(i) Polynomial type of order m:

ϕP
m(x) = xm

and

ΦP
m(x) := 1− 2ϕP

m

(
1− x

2

)
= 1− (1− x)m

2m−1
,

which is equivalent to the Sato-polynomial transformation, ΦSat
m (x) in (1.1).
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(ii) Exponential type of order m:

ϕE
m(x) =

{
e1+x − e1−x

e2 − 1

}m

(2.3)

and

ΦE
m(x) := 1− 2ϕE

m

(
1− x

2

)
.

(iii) Trigonometric type of order m:

ϕT
m(x) = tanm

(πx
4

)
(2.4)

and

ΦT
m(x) := 1− 2ϕT

m

(
1− x

2

)
. (2.5)

On the other hand, we suggest an exponential type of infinite order,

g(δ;x) = exp

(
1

δ2

(
1− 1

x2

))
(2.6)

for a parameter δ > 0. This function satisfies g(δ; 1) = 1 and

lim
x→0

dj

dxj
g(δ;x) = 0 ,

for all integers j ≥ 0, instead of the property (P2). This implies the “infinite order”of g(δ;x).
Then we define a function

Gδ(x) := 1− 2g

(
δ;

1− x

2

)
. (2.7)

We can see that limx→1
dj

dxjGδ(x) = 0 for all integers j ≥ 1 with Gδ(−1) = −1 and
limx→1Gδ(x) = 1.

3. INTERIOR-POINT SINGULAR INTEGRALS

For the interior-point weakly singular integral∫ 1

−1
|ξ − s0|κh(ξ) dξ , −1 < κ < 0, (3.1)

where 0 ≤ s0 < 1 is assumed for simplicity, we consider a systematic coordinate transforma-
tion method without splitting the integration interval.

Using the function ϕm satisfying the properties (P1)–(P3), we suggest a transformation Ψm

defined as

Ψm(x) :=

{
s0 + (1− s0x)ϕm(x) , if ϕm is an odd function

s0 + x (1− s0x)ϕm(x) , if ϕm is an even function
(3.2)
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for −1 ≤ x ≤ 1. It is noted that any singular point s0 is always shifted to the midpoint 0 by
the transformation Ψm. The following lemma shows the asymptotic behavior of Ψm(x) near
x = 0 and states that Ψm(x) becomes a bijective map, from the interval [−1, 1] onto itself, if
m satisfies an appropriate condition relative to s0.

Lemma 3.1. For 0 ≤ s0 < 1 and ϕm used in (3.2), we have the following properties.
(1) Ψm satisfies

Ψm(−1) = −1, Ψm(0) = s0, Ψm(1) = 1.

(2) The asymptotic behavior of Ψm(x), near x = 0, is

Ψm(x) = s0 + O (xm)

when ϕm is an odd function and

Ψm(x) = s0 + O
(
xm+1

)
when ϕm is an even function.

(3) Assume that ϕ′
m(x)/ϕm(x), m ≥ 2, has a minimum over the interval 0 < x ≤ 1 at

x = 1. Then Ψm(x) is bijective over the interval −1 ≤ x ≤ 1 for any m satisfying

ϕ′
m(1) >

s0
1− s0

when ϕm is an odd function and

ϕ′
m(1) + 1 >

s0
1− s0

when ϕm is an even function.

Proof. Referring to the properties (P1)–(P3) of ϕm employed in definition of Ψm in (3.2), we
can directly identify the equalities in the assertions (1) and (2).

For the assertion (3), first, suppose that ϕm is an odd function. Then the sufficient condition
for Ψm(x) to be bijective over the interval −1 ≤ x ≤ 1 is

Ψ′
m(x) = −s0ϕm(x) + (1− s0x)ϕ

′
m(x) > 0

for all x ̸= 0 in [−1, 1]. When s0 = 0, Ψ′
m(x) = ϕ′

m(x) > 0 is clear so that we assume that
0 < s0 < 1. For −1 ≤ x < 0, since ϕm(x) < 0 and ϕ′

m(x) > 0, we have Ψ′
m(x) > 0

regardless of m ≥ 2. For 0 < x ≤ 1, since ϕm(x) > 0 and ϕ′
m(x) > 0, the condition above

implies that
1− s0x

s0
· ϕ

′
m(x)

ϕm(x)
> 1.

By the assumption that ϕ′
m(x)/ϕm(x) has a minimum at x = 1, we may set

1− s0x

s0
· ϕ

′
m(x)

ϕm(x)
≥ 1− s0

s0
· ϕ′

m(1) > 1.
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Therefore, we have the following sufficient condition for Ψm to be bijective.

ϕ′
m(1) ≥ s0

1− s0
.

Next, suppose that ϕm is an even function. The sufficient condition for Ψm(x) to be bijective
over the interval −1 ≤ x ≤ 1 is

Ψ′
m(x) = −s0xϕm(x) + (1− s0x)

{
xϕ′

m(x) + ϕm(x)
}
> 0.

When s0 = 0, Ψ′
m(x) = xϕ′

m(x) + ϕm(x) > 0 is clear so that we assume that 0 < s0 < 1.
For −1 ≤ x < 0, since ϕm(x) > 0 and ϕ′

m(x) < 0, we have Ψ′
m(x) > 0 regardless of m ≥ 2.

For 0 < x ≤ 1, since ϕm(x) > 0 and ϕ′
m(x) > 0, the condition above implies that

1− s0x

s0
· xϕ

′
m(x) + ϕm(x)

xϕm(x)
> 1.

By the assumption that ϕ′
m(x)/ϕm(x) has a minimum at x = 1, we set

1− s0x

s0
· xϕ

′
m(x) + ϕm(x)

xϕm(x)
≥ 1− s0

s0
·
{
ϕ′
m(1) + 1

}
> 1.

Therefore, we have the following sufficient condition for Ψm to be bijective.

ϕ′
m(1) + 1 >

s0
1− s0

.

This completes the proof of the assertion (3). □

For the prototype function ϕP
m(x) = xm, the formula (3.2) provides a simple form,

ΨP
m(x) = s0 + (1− s0x)x

m

for any odd integer m ≥ 3. Sine
ϕP ′
m (x)

ϕP
m(x)

=
m

x

has a minimum ϕP
m

′
(1) = m over the interval 0 < x ≤ 1, from Lemma 3.1(3), we can see that

the function ΨP
m becomes a bijective function for all odd integer m ≥ 3 satisfying

m >
s0

1− s0
.

This condition implies that m ≥ 3 for every s0 < 0.75, m ≥ 5 for s0 = 0.8, m ≥ 11 for
s0 = 0.9, for example.

For the prototype function ϕE
m defined in (2.3), from the formula (3.2), we have

ΨE
m(x) = s0 + (1− s0x)ϕ

E
m(x)

for any odd integer m ≥ 3. Sine

ϕE ′
m (x)

ϕE
m(x)

= m
e1+x + e1−x

e1+x − e1−x
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has a minimum ϕE
m

′
(1) = m e2+1

e2−1
over the interval 0 < x ≤ 1, from Lemma 3.1(3), the

function ΨE
m becomes a bijective function for all odd integers m satisfying

m >

(
e2 − 1

e2 + 1

)
s0

1− s0
. (3.3)

The condition (3.3) implies that m ≥ 3 for every s0 ≤ 0.75, m ≥ 5 for s0 = 0.8 and m ≥ 7
for s0 = 0.9, for example.
In addition, using the prototype function ϕT

m defined in (2.4), we have

ΨT
m(x) = s0 + (1− s0x)ϕ

T
m(x) (3.4)

for every odd integer m ≥ 3. Sine

ϕT ′
m (x)

ϕT
m(x)

=
mπ sec2

(
π
4x

)
4 tan

(
π
4x

)
has a minimum ϕT

m
′
(1) = πm

2 over the interval 0 < x ≤ 1, from Lemma 2(3), we can see that
ΨT

m becomes a bijective function for all odd integer m ≥ 3 satisfying

m >
2

π

s0
1− s0

.

This condition implies that m ≥ 3 for every s0 ≤ 0.8, and m ≥ 7 for s0 = 0.9, for example.
We can see that the change of variable ξ = Ψm(x) in (3.1) weakens the singularity strength

κ of the integrand to (κ + 1)m − 1. Moreover, Lemma2(3) shows that the minimum value of
m useful for this change of variable increases as the location of the singularity s0 approaches
to the end point x = 1.

On the other hand, employing the even function g(δ;x) = exp
(

1
δ2

(
1− 1

x2

))
given in (2.6)

and referring to the formula (3.2), we introduce a function

Hδ(x) = s0 + x (1− s0x) g(δ;x) (3.5)

for a parameter δ > 0. It can be seen that

H ′
δ(x) =

g(δ;x)

δ2x2
(
2 + δ2x2 − 2s0x− 2δ2s0x

3
)

≥ g(δ;x)

δ2x2
(
2− 2s0 − 2δ2s0

)
for all −1 ≤ x ≤ 1. Thus we may find a sufficient condition for H ′

δ(x) > 0 from 2 − 2s0 −
2δ2s0 > 0, that is,

δ <

√
1− s0
s0

for 0 < s0 < 1. This condition implies that δ < 1 for every s0 ≤ 0.5, δ < 1
2 for s0 = 0.8 and

δ < 1
3 for s0 = 0.9 and δ < 0.229 for s0 = 0.95, for example.
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FIGURE 1. Graphs of ΨP
3 (x), Ψ

T
3 (x), Ψ

MS
3 (x), and Hδ(x) with δ = 1/4 for

s0 = 0.3.

Figure 1 shows graphs of the presented transformations ΨP
3 (x), Ψ

T
3 (x) and Hδ(x) with δ =

1/4, for the case of s0 = 0.3, compared with the well-known Monegato-Sloan transformation
ΨMS

3 (x) defined in (1.2).

4. NUMERICAL EXAMPLES

To explore the efficiency of the presented method, we select two typical examples in this
section. First, the following example involves end-point weakly singular integrals.

Example 1. For a real −1 < κ < 0,

I [κ] :=

∫ 1

−1
(1− ξ)κ(1 + ξ) dξ

whose exact value is 2κ+2

(1+κ)(2+κ) .

We denoted by I
[κ]
N (Φm) the N−point Gauss Legendre quadrature rule associated with the

transformation Φm. For κ = −0.5, Figure 2 includes numerical results of the difference errors

E
[κ]
N (Φm) :=

∣∣∣I [κ] − I
[κ]
N (Φm)

∣∣∣
related to the presented transformation Φm = ΦT

m in (2.5) and the Sato-transformation Φm =
ΦSat
m (= ΦP

m) in (1.1). We can see that ΦT
m gives slightly better errors than ΦSat

m for both the
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number of integration points N and the order m of the transformation. Numerical experiments
show that the other presented transformation ΦE

m results in the similar error tendency to that of
ΦT
m.
For the case of κ = −0.95, or the case where the singularity is high, Figure 3(a) shows the

numerical errors E[κ]
N

(
ΦT
m

)
and E

[κ]
N

(
ΦSat
m

)
with a similar trend to the case of κ = −0.5. That

is, the proposed transformation ΦT
m gives slightly better errors than the compared transforma-

tion ΦSat
m for every number of integration points.

In addition, numerical errors related to another proposed transformation Gδ, defined in (2.7),
with δ = 1

4 and δ = 1
8 are included in Fig. 3(b). This shows significantly improved errors

compared with other transformations.
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(a) 20 ≤ N ≤ 80 (m = 7, 13) (b) 5 ≤ m ≤ 21 (N = 40)

FIGURE 2. Graphs of the errors related to the transformations ΦT
m and ΦSat

m

with respect to 20 ≤ N ≤ 80 in (a) and those with respect to 5 ≤ m ≤ 21 in
(b) for Example 1 with κ = −0.5.

Next, we consider the following example of the interior-point weakly singular integral.

Example 2. For a real −1 < κ < 0 and for the location of a singularity −1 < s0 < 1,

J [κ] :=

∫ 1

−1
|ξ − s0|κ(1 + ξ) dξ

whose exact value is 1
(1+κ)(2+κ)

{
(1 + s0)

2+κ + (1− s0)
1+κ(3 + 2κ+ s0)

}
.

We set the difference error

E
[κ]
N (Ψm) :=

∣∣∣J [κ] − J
[κ]
N (Ψm)

∣∣∣
for J [κ]

N (Ψm) denoting the N−point Gauss Legendre quadrature rule associated with the trans-
formation Ψm. Figure 4, for the case of κ = −0.5 with s0 = 0.1, includes numerical errors
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1
8 )

FIGURE 3. Graphs of the errors related to the transformations ΦT
m and ΦSat

m

in (a) and graphs of the errors related to the transformation Gδ in (b) for Ex-
ample 1 with κ = −0.95.

with respect to the number of integration points N in (a) and the order of the transformations m
in (b). The figure shows that the proposed transformation ΨT

m gives little better errors than the
Monegato-Sloan transformation ΨMS

m for both N and m. By numerical experiments, we can
see that the other presented transformations ΨP

m and ΨE
m result in the similar error tendency to

that of ΨT
m. Especially, it should also be noted that the presented transformations defined in

(3.2) is quit simple compared to the existing transformations (1.2) – (1.4).
For a higher strength of the singularity, κ = −0.95 with s0 = 0.9, Figure 5(a) shows

numerical errors related to ΨT
m and ΨMS

m . It can be seen that the proposed transformation
ΨT

m results in the uniformly decreasing errors, whereas ΨMS
m gives fluctuating errors as the

number of integration points N increases. In addition, Fig. 5(b) includes numerical errors
related to the proposed transformation Hδ, defined in (3.5), with δ = 1

8 and δ = 1
16 . We can

see that, like Gδ in Example 1, Hδ also gives significantly improved errors compared with other
transformations.

Numerical experiments show that the error trends of the proposed transformations presented
in Fig. 4 and Fig. 5 remain almost the same regardless of the strength κ and the location s0 of
the singularity.

5. CONCLUSIONS

We proposed families of nonlinear transformations Φm(x) in (2.2) and Ψm(x) in (3.2),
based on the prototype function ϕm(x) satisfying the properties (P1)–(P3), for efficient evalu-
ation of weakly singular integrals. Exceptionally, the transformations Gδ(x) and Hδ(x) were
introduced using the function g(δ;x) in (2.6). It should be noted that the proposed transforma-
tions take simple forms compared to the existing the Monegato-Sloan transformation ΨMS

m (x)



204 B.I. YUN

1x10
-20

1x10
-16

1x10
-12

1x10
-8

1x10
-4

1

 20  30  40  50  60  70  80

(N)

m=13

m=25

Ψ
m

MS

Ψ
m

T

1x10
-25

1x10
-20

1x10
-15

1x10
-10

1x10
-5

1

 9  17  25  33  41

(m)

Ψ
m

MS

Ψ
m

T

(a) 20 ≤ N ≤ 80 (m = 13, 25) (b) 9 ≤ m ≤ 41 (N = 40)

FIGURE 4. Graphs of the errors related to the transformations ΨT
m and ΨMS

m

with respect to 20 ≤ N ≤ 80 in (a) and those with respect to 9 ≤ m ≤ 41 in
(b) for Example 2 with κ = −0.5 and s0 = 0.1.
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FIGURE 5. Graphs of the errors related to the transformations ΨT
m and ΨMS

m

in (a) and graphs of the errors related to the transformation Hδ in (b) for Ex-
ample 2 with κ = −0.95 and s0 = 0.9.

and the generalized sigmoidal transformation ΨSGM
m (x) defined in (1.2) and (1.4), respectively.

From the numerical results for the chosen test examples, we can summarize the conclusions as
follows.
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For end-point weakly singular integrals, the proposed transformations ΦT
m(x) and ΦE

m(x)
provide slightly better errors than the exiting Sato-transformation ΦSat

m (x) = ΦP
m(x). More-

over, Gδ(x) with a parameter δ > 0 gives much better errors even for the high singularity
strength κ around −1.

For interior-point weakly singular integrals, the proposed transformations ΨT
m(x), ΨE

m(x)
and ΨP

m(x) also provide slightly better errors compared to the traditional Monegato-Sloan
transformation ΨMS

m (x). On the other hand, like Gδ(x) for the end-point weakly singular
integrals, Hδ(x) also gives significantly improved errors compared with other transformations.
Additionally, for κ near −1, the proposed transformations tend to uniformly reduce the error
as the number of the integration points N increases, in contrast to the existing transformation
ΨMS

m (x).
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