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ABSTRACT. This paper aims to improve the alternative formulation of the fifth- and sixth-order
accurate weighted essentially non-oscillatory (AWENO) finite difference schemes. The first is
to derive the AWENO scheme with sixth-order accuracy in the smooth region of the solution.
Second, a new weighted polynomial functions combining the perturbed forms with conserved
variable to the AWENO is constructed; the new form of tunable functions are invented to main-
tain non-oscillatory property. Detailed numerical experiments are presented to illustrate the
behavior of the new perturbational AWENO schemes. The performance of the present scheme
is evaluated in terms of accuracy and resolution of discontinuities using a variety of one and
two-dimensional test cases. We show that the resulted perturbational AWENO schemes can
achieve fifth- and sixth-order accuracy in smooth regions while reducing numerical dissipation
significantly near singularities.

1. INTRODUCTION

The hyperbolic conservation law appears frequently in scientific or engineering applications.
It has the nature of allowing discontinuities that cause difficulties to obtain high accuracy nu-
merical solutions. The TVD schemes [1, 2] are very efficient for suppressing the spurious
oscillations in numerical solution, however it degenerates accuracy near extrema. The ENO
scheme [3, 4, 5, 6, 7] yields non-oscillatory solution by selecting smoothest stencil. The first
WENO method introduced by Liu, Osher and Chan [8] had a finite volume form with third-
order accuracy in smooth regions. WENO family schemes achieve the non-oscillatory property
from non-linear combination of all candidate stencils. A finite difference form of WENO which
is very efficient for multidimensional problems, was devised by Jiang and Shu [9] (hereafter
WENO-JS). Although the WENO-JS method loses the optimal order at critical points, it is a
general framework for WENO schemes.

The mapped WENO scheme (WENO-M) [10] adopts a mapping function to adjust weights
of WENO-JS, so it requires more computational cost compared to WENO-JS. The WENO-
Z [11] was proposed to derive maximal rate of convergence and to obtain improved results
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near discontinuities. Acker, Borges, Costa [12] appended a new term to the smoothness in-
dicator and increased the relevance of less-smooth sub-stencils. Another fifth-order WENO
schemes modifying nonlinear weights [13, 14, 15, 16] are further proposed to improve solu-
tions. Hu, Wang, and Adams [17, 18] proposed another version of the sixth-order WENO
scheme (WENO-CU) using a new smoothness indicator. In addition, accuracy of WENO
scheme has been improved continuously [19, 20, 21]. The central WENO schemes [22, 23, 24],
hybrid compact WENO schemes [25, 26], and other versions of the WENO methods [27, 28,
29, 30, 31, 32] have been suggested by many researcher to improve the accuracy of the solu-
tions.

Zeng, Shen and Liu [33] introduced perturbational WENO (P-WENO) scheme with the per-
turbed candidate fluxes in the WENO-Z schemes. They proved that P-WENO has the sufficient
conditions for fifth-order convergence even at critical points. Wang et al. [34] improved the
P-WENO scheme by modified smoothness indicators adding a perturbed cubic polynomial ap-
proximation of the numerical flux on each candidate stencil using the weights of the WENO-JS
scheme.

Since the classical finite difference WENO method for solving the hyperbolic conservation
law utilizes a very diffusive flux division, their solutions are not accurate as expected. So, Jiang,
Shu, and Zhang [35] proposed a fifth-order alternative WENO method using Lax-Wendroff
time discretization (referred to as AWENO). The AWENO methods obtain the numerical re-
sults by reconstructing conservative variables, whereas the classical WENO methods obtain the
results through the reconstruction of the flux function. Also, AWENO can apply any monotone
flux function for the numerical flux, whereas the classic WENO finite difference methods use
only smooth flux splitting to reconstruct the flux function.

Even though AWENO has complex implementations, it takes an advantage of various nu-
merical fluxes corresponding to high-order accuracy finite volume method. The AWENO
method demonstrates high resolution for fine structures and maintains non-oscillatory prop-
erty near discontinuities, because it has less dissipation and dispersion error when compared
to the WENO method [35]. Furthermore, the AWENO scheme automatically preserves the
free-stream in the curvilinear meshes [36]. Liu [37] investigated the performance of several nu-
merical fluxes coupled with AWENO scheme(AWENO-JS). Since the AWENO-JS fail to yield
the optimal order of accuracy at the critical points, Wang et al. [38] porposed the AWENO-Z
scheme which is employed the WENO-Z nonlinear weights [11, 39] to maintain optimal or-
der of accuracy at the critical points. Liu and Qiu [40] applied AWENO approach to Hermite
WENO scheme. Wang, Don, Garg, and Kurganov [41] announced characteristicwise alter-
native WENO-Z finite-difference schemes, which adaptively adjusts the numerical diffusion
coefficient for the compressible Euler gas dynamics equations.

In this paper, we develop the perturbational AWENO schemes which are adding the per-
turbed terms to the candidate conservative variables to construct a new weighted scheme for
fifth order AWENO-JS and AWENO-Z and sixth order AWENO-CU. First, we formulate the
perturbational AWENO schemes to the fifth order AWENO-JS and AWENO-Z schemes. We
propose the sixth order AWENO scheme from modifying the WENO-CU scheme and develop
the corresponding coefficients of the perturbed terms to yield the sixth order smooth regions
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even at critical points. Comparing with other AWENO schemes, the proposed schemes yield
better approximations with perturbational terms. A number of numerical experiments are pre-
sented to illustrate the behavior of the new AWENO scheme.

The rest of this paper is organized as follows. Section 2 gives a brief review of the AWENO.
In Section 3, a perturbational AWENO scheme is introduced with new tunable functions which
controls the contribution of perturbational terms. In Section 4, we address the low dissipation
and robustness of the proposed schemes with detailed numerical tests. Some conclusions of
this paper are given in Section 5.

2. AWENO schemes

We depict a formula of AWENO schemes in this section. The hyperbolic conservation law
can be explained reasonably in one-dimensional spacial coordinate x and temporal coordinate
t :

ut + f(u)x = 0, t ≥ 0, x ∈ R,
u(x, 0) = u0(x),

(2.1)

under proper boundary conditions. Here, the vector u = (u1, · · · , um) represents conserved
quantities, and f(u) is a vector-valued function with m components. The computational do-
main is partitioned into uniform cells Ij = [xj−1/2, xj+1/2] and ∆x = xj+1/2 − xj−1/2

denote the cell size. The centers of each cell are denoted by the points {xj+1/2}. In particular,
fj := f(u(xj , t)) represents the function value at the node xj .

2.1. Formulation of AWENO scheme. At each node xj , the semi-discretized form of the Eq.
(2.1) generates a system of ODE (ordinary differential equation) by the method of lines:

duj
dt

= −∂f

∂x

∣∣∣
x=xj

(2.2)

where uj(t) is an approximate value to the value u(xj , t) in a grid. The spatial derivative
∂f
∂x

∣∣∣
x=xj

in (2.2) can be approximated by the following conservative scheme

∂f

∂x

∣∣∣
x=xj

= −
f̂j+ 1

2
− f̂j− 1

2

∆x

where the numerical flux f̂j+ 1
2
= f̂(uj−r, · · · , uj+s) with r+s = k−1 is designed to become

a kth-order scheme.
We now briefly describe the alternative WENO (AWENO) schemes in one dimensional

scalar cases (2.1). The numerical flux of the AWENO method proposed by Jiang et al. [35]
takes a new type of numerical flux that is different from the flux used in the classical WENO
method. AWENO’s numerical flux f̂ is a form of adding a high-order numerical flux f̂HO to
the low-order numerical flux f̂LO; f̂j+ 1

2
= f̂HO

j+ 1
2

+ f̂LO
j+ 1

2

. Any monotone flux can be used
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for the low-order numerical flux f̂LO. We use the Lax-Friedrichs or HLLC flux function in
Appendix. The high-order numerical flux f̂HO is defined by

f̂HO
j+ 1

2

=

[(k−1)/2]∑
l=1

a2l∆x2l

(
∂2l

∂x2l
f

)
j+ 1

2

+O(∆xk+1).

In order to achieve fifth- and sixth-order accuracy AWENO schemes, we obtain the coefficients
a2l from the Taylor series expansion. Thus we have

f̂HO
j+ 1

2

= − 1

24
(∆x)2(fxx)j+ 1

2
+

7

5760
(∆x)4(fxxxx)j+ 1

2
+O(∆x6).

The the second and fourth derivatives are approximated from the standard central finite differ-
ences method with an overall global accuracy O(∆x6), that is

∆x2fxx

∣∣∣
j+ 1

2

=
1

48
(−5fj−2 + 39fj−1 − 34fj − 34fj+1 + 39fj+2 − 5fj+3) +O(∆x6),

(2.3)

∆x4fxxxx

∣∣∣
j+ 1

2

=
1

2
(fj−2 − 3fj−1 + 2fj + 2fj+1 − 3fj+2 + fj+3) +O(∆x6).

2.2. WENO interpolations. The kth-order accuracy WENO interpolation uses the convex
combination of rth-order polynomial approximation p

(r)

j+ 1
2

obtained based on r-th point subs-

tencil

u−
j+ 1

2

=
k−1∑
r=0

ωrp
(r)

j+ 1
2

(2.4)

where ωr are the nonlinear weights. In order to obtain ωr, we are using optimal (or ideal)
weights dr and applying the improved nonlinear weights which are introduced by Borges at al.
[11]:

ωr =
αr∑k−1
ℓ=0 αℓ

, αr = dr

[
1 +

( τ2k−1

βr + ε

)]
, r = 0, 1, . . . , k − 1

where a small positive value ε > 0 is employed to prevent the division by zero and τ2k−1 is the
global (optimal order) smoothness indicator. The local smoothness indicator βr introduced by
Jiang and Shu [9] is given by

βr =

k−1∑
ℓ=1

∫ xj+1/2

xj−1/2

∆x2ℓ−1
( dℓ

dxℓ
p(r)
)2

dx, r = 0, 1, . . . , k − 1. (2.5)

The reconstruction to u+
j+ 1

2

is mirror symmetric to that for u−
j+ 1

2

from {xj−r+1, . . . , xj+s+1}.
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2.2.1. The fifth-order WENO interpolation. The fifth-order WENO interpolation is to combine
the three second-order polynomial approximations on the stencils

G5 := {xj−2, . . . , xj+2}
which is subdivided into three candidate substencils Sr := {xj+r−2, xj+r−1, xj+r}, r =
0, 1, 2.

We would derive the three parabolic interpolants p(r) from the candidate substencils Sr for
r = 0, 1, 2 and then weights ωr are assigned to each parabolic interpolant p(r) to construct the
fifth-order WENO interpolation. Then the three interpolants are given by

p
(0)

j+ 1
2

=
3

8
uj−2 −

5

4
uj−1 +

15

8
uj ,

p
(1)

j+ 1
2

= −1

8
uj−1 +

3

4
uj +

3

8
uj+1,

p
(2)

j+ 1
2

=
3

8
uj +

3

4
uj+1 −

1

8
uj+2.

(2.6)

The final WENO interpolation is defined by a convex combination of these functions with
weights ωr in Eq. (2.4). The specific values of dr are known as d0 = 1

16 , d1 = 10
16 and d2 =

5
16 .

The τ5 = |β0−β2| is used for the global (optimal order) smoothness indicator. The smoothness
indicators are given by

β0 =
1

4
(uj−2 − 4uj−1 + 3uj)

2 +
13

12
(uj−2 − 2uj−1 + uj)

2,

β1 =
1

4
(uj−1 − uj+1)

2 +
13

12
(uj−1 − 2uj + uj+1)

2,

β2 =
1

4
(3uj − 4uj+1 + ui+2)

2 +
13

12
(uj − 2uj+1 + uj+2)

2.

(2.7)

2.2.2. The sixth-order WENO interpolation. For the sixth-order WENO interpolation, we use
a six point stencil

G6 := {xj−2, . . . , xj+3}
having the four second order polynomials p(r) on the four substencils Sr := {xj+r−2, . . . , xj+r},
r = 0, 1, 2, 3. The nonlinear weights ωr and optimal weights dr can be obtained by a similar
way for the fifth-order WENO methods. Then the global solution u−

j+ 1
2

is obtained by a convex

combination of the local solutions p(r)
j+ 1

2

with r = 0, 1, 2, 3:

u−
j+ 1

2

=
3∑

r=0

ωrp
(r)

j+ 1
2

where {ωr : r = 0, · · · , 3} are nonlinear weights. The p(r), r = 0, 1, 2, are the same with
those of fifth-order WENO schemes and the last p(3) is assigned by

p
(3)

j+ 1
2

=
15

8
uj+1 −

5

4
uj+2 +

3

8
uj+3.
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In order to retain the sixth-order convergence, the specific values of dk are computed as d0 =
1
32 , d1 = d2 = 15

32 and d3 = 1
32 . Further, using these numbers dr, the nonlinear weights ωr are

defined by

ωr =
αr∑3
ℓ=0 αℓ

, αr = dr

(
1 +

τ6
ε+ βr

)
, r = 0, 1, 2, 3, (2.8)

where τ6 = β6 − 1
6(β0 + 4β1 + β2) and ε = 10−20 are employed to prevent the denomina-

tor becoming zero. For the sixth-order WENO interpolation, the smoothness indicator β3 is
replaced by β6 which is obtained by calculating (2.5) with the sixth-order interpolation, that is

β3 = β6 =
1

12 · 10080
[
271779u2

j−2 + uj−2(−2380800uj−1 + 4086352uj − 3462252uj+1 + 1458762uj+2 − 245620uj+3)

+ uj−1(5653317uj−1 − 20427884uj + 17905032uj+1 − 7727988uj+2 + 1325006uj+3) + uj(19510972uj

− 35817664uj+1 + 15929912uj+2 − 2792660uj+3) + uj+1(17195652uj+1 − 15880404uj+2 + 2863984uj+3)

+ uj+2(3824847uj+2 − 1429976uj+3) + 139633u2
j+3

]
.

3. THE PERTURBATIONAL WENO INTERPOLATIONS

In this section, we will introduce modified WENO interpolations by adding high-order cor-
rectional terms to each parabolic interpolant p(r) in Eq. (2.6) to improve solutions nearby
discontinuities.

3.1. The fifth-order case. Firstly, we will modify the parabolic interpolants (2.6) with Taylor
expansions with respect to uj+ 1

2
on the stencils G5 := {xj−2, . . . , xj+2}. Then we get the

following formulas

p
(0)

j+ 1
2

= uj+ 1
2
− 5

16
∆x3u′′′

j+ 1
2

+O(∆x4),

p
(1)

j+ 1
2

= uj+ 1
2
+

1

16
∆x3u′′′

j+ 1
2

+O(∆x4),

p
(2)

j+ 1
2

= uj+ 1
2
− 1

16
∆x3u′′′

j+ 1
2

+O(∆x4).

If we follow perturbational approach [33], u′′′
j+ 1

2

approximates to

u′′′
j+ 1

2

=
−uj−2 + 2uj−1 − 2uj+1 + uj+2

2∆x3
+O(∆x).

The WENO interpolations are promoted to fourth-order from the third-order accuracy by in-
troducing the perturbational term. The modified WENO interpolations p̃(r) on each candidate
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substencil at xj+ 1
2

is obtained by the following forms:

p̃
(0)

j+ 1
2

= uj+ 1
2
+

5

32
(−uj−2 + 2uj−1 − 2uj+1 + uj+2),

p̃
(1)

j+ 1
2

= uj+ 1
2
− 1

32
(−uj−2 + 2uj−1 − 2uj+1 + uj+2),

p̃
(2)

j+ 1
2

= uj+ 1
2
+

1

32
(−uj−2 + 2uj−1 − 2uj+1 + uj+2).

(3.1)

Thus we have the global solution u−
j+ 1

2

is obtained by p̃
(r)

j+ 1
2

with r = 0, 1, 2:

u−
j+ 1

2

=
2∑

k=0

ωkp̃
(k)

j+ 1
2

.

However, the modified interpolations can be lost the ENO property because of ∆x3u′′′
j+ 1

2

=

(−uj−2 + 2uj−1 − 2uj+1 + uj+2)/2 in all interpolation. In [33], a tunable function φ5 is
applied to limit the influence of the last terms in Eq. (3.1) and recover the ENO property. The
final WENO interpolation is

u−
j+ 1

2

=
2∑

k=0

ωkp
(k)

j+ 1
2

+
φ5(5ω0 − ω1 + ω2)

32
(−uj−2 + 2uj−1 − 2uj+1 + uj+2) (3.2)

where φ5 =
( 2

√
β0β2

β0 + β2 + ε

)
is ratio of the geometric mean to the arithmetic mean for β0 and

β2. The function φ5 controls the contribution of u′′′
j+ 1

2

; it has small value when the stencil has

discontinuities whereas it closes to 1 in smooth regions.

3.2. The sixth-order case. Since the sixth-order WENO interpolation combines the four second-
order polynomials p(k), it needs extra polynomial p(3) on stencil {xj+1, xj+2, xj+3}. The
fourth polynomial p(3) also is computed by

p
(3)

j+ 1
2

= uj+ 1
2
+

5

16
∆x3u′′′

j+ 1
2

+O(∆x4).

In order to obtain the sixth-order accurate, u′′′
j+ 1

2

have to be discretize by

u′′′
∣∣∣
j+ 1

2

=
−uj−2 − uj−1 + 10uj − 14ui+1 + 7uj+2 − uj+3

4∆x3
+O(∆x)

on six points stencil : {xj−2, . . . , xj+3}. Thus we have

p̃
(k)

j+ 1
2

= uj+ 1
2
+Ak

−uj−2 − uj−1 + 10uj − 14ui+1 + 7uj+2 − uj+3

4∆x3
,

where A0 = 5
16 , A1 = − 1

16 , A2 = 1
16 and A3 = − 5

16 . The tunable function φ6 is required
to restore ENO properties near discontinuities. In this paper, we consider two sub-stencils
{xj−2, . . . , xj+1} and {xj , . . . , xj+3} to construct φ6. Since each sub-stencil consists of four
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points, the third derivative property is available. The closed formula can be written as φ6 =( 2
√
α1α2

α1 + α2 + ε

)
, where

α1 = (a1 +
1

10
a3)

2 +
13

3
a22 +

781

20
a23,

α2 = (b1 +
1

10
b3)

2 +
13

3
b22 +

781

20
b23

and

a1 =
11uj−2 + 63uj−2 + 33uj−1 + 19uj

60
, a2 =

uj−1 − 2uj + uj+1

2
,

a3 =
−uj−2 + 3uj−2 − 3uj−1 + uj

6
, b1 =

−109uj + 177uj+1 − 87uj+2 + 19uj+3

60
,

b2 =
2uj − 5uj+1 + 4uj+2 − 3uj+3

2
, b3 =

−uj + 3uj+1 − 3uj+2 + uj+3

6
.

The φ6 is ratio of the geometric mean to the arithmetic mean for α1 and α2. Also, 0 ≤ φ6 ≤ 1
limits the contribution of u′′′

j+ 1
2

. Finally, we have the following form;

u−
j+ 1

2

=

3∑
k=0

ωkp̃
(k)

j+ 1
2

,

=

3∑
k=0

ωkp
(k)

j+ 1
2

+
φ6(5ω0 − ω1 + ω2 − 5ω3)

64
(−uj−2 − uj−1 + 10uj − 14ui+1 + 7uj+2 − uj+3).

(3.3)

We summarize the overall procedure for perturbed AWENO in Algorithm 1.

(1) compute the interpolants p(r)
j+ 1

2

from Eq. (2.6)

(2) compute the βr and ωr from Eq. (2.7) and Eq. (2.8), respectively
(3) compute the u−

j+ 1
2

from Eq. (3.2) or Eq. (3.3)

(4) compute the u+
j+ 1

2

with mirror symmetric process of (1), (2) and (3)

(5) compute the f̂LO
j+ 1

2

from selected flux function (LF or HLLC)

(6) compute the f̂HO
j+ 1

2

from Eq. (2.3)

(7) finally, the numerical flux f̂j+ 1
2
= f̂HO

j+ 1
2

+ f̂LO
j+ 1

2

Algorithm 1: The generalized procedure to obtain flux for perturbed AWENO schemes



IMPROVED AWENO-P 215

4. NUMERICAL RESULTS

In this section, we demonstrate the non-oscillatory property and designed accuracy of the
proposed perturbational AWENO schemes with several numerical tests of the hyperbolic con-
servation laws. The AWENO-Z or AWENO-CU are alternative WENOs based on WENO-Z
[11, 39] or sixth-order central upwind [17], respectively. Each scheme can be improved by
perturbational terms; the suffix ‘-P’ means perturbational scheme. We start with the accuracy
test of the 1D and 2D Euler equations.

4.1. Convergence Order of AWENO. We test the accuracy of the proposed AWENO schemes
using the one and two-dimensional Euler equations.

Example 4.1. (Accuracy test) It is important that proposed schemes satisfy the desired order
of accuracy. Let us consider the convergence order with the Euler equation in one- or two-
dimensional coordinate:

Ut + F (U)x +G(U)y = 0.

Here

U = (ρ, ρu, ρv, E)T ,

F (U) = (ρu, p+ ρu2, ρuv, u(E + p))T ,

G(U) = (ρv, ρvu, p+ ρv2, v(E + p))T

where ρ is the density, u and v (is 0 for one-dimensional case) are speed for x-axis and y-axis
direction respectively; The pressure p has a relation with total energy E i.e. equation of state
for ideal gas:

E =
p

γ − 1
+

ρ(u2 + v2)

2

where γ = 1.4 is the ratio of specific heats. The initial data is

ρ(x, y, t) = 1 + 0.5 sin(4π(x+ y)) with u = 1, v = −1/2, pressure p = 1

and periodic boundary conditions are employed. We use classical (non-TVD) RK4 [7] with
∆t = ∆x6/4 and perform the test until the final time t = 4. The Lax-Friedrichs (LF) flux
function is chosen for f̂LO. The L1- and L∞- errors of density ρ are presented in Table 1 and 2;
all schemes show the desired order of accuracy on refined mesh. The perturbational terms
improve AWENO schemes. We notice that the perturbational terms can reduce the excessive
dissipation in AWENO schemes while satisfy desirable accuracy; new tunable functions φ5

and φ6 properly work on AWENO scheme. The AWENO-CU-P scheme shows good efficiency
compared to the other AWENO schemes.

4.2. 1D Euler Systems. Let us consider the 1D Euler gas dynamics for ideal gases. The
characteristic decomposition [42] is performed to generalize the AWENO methods. The low-
order numerical flux f̂LO is the Lax-Fridrich (denoted as LF) or HLLC.
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TABLE 1. Order of accuracy on refined grids: L1 and L∞ errors of density
in the Euler 1D system with smooth periodic initial condition.

AWENO-Z AWENO-Z-P AWENO-CU AWENO-CU-P
N L1-error (order)
20 1.66E-04 ( — ) 1.53E-04 ( — ) 3.51E-05 ( — ) 3.42E-05 ( — )
40 4.72E-06 (5.14) 4.67E-06 (5.03) 4.98E-07 (6.14) 4.95E-07 (6.11)
80 1.45E-07 (5.02) 1.45E-07 (5.01) 7.59E-09 (6.04) 7.58E-09 (6.03)

160 4.51E-09 (5.00) 4.51E-09 (5.01) 1.18E-10 (6.01) 1.18E-10 (6.01)
320 1.41E-10 (5.00) 1.41E-10 (5.00) 2.36E-12 (5.64) 2.36E-12 (5.64)
N L∞-error (order)
20 2.76E-04 ( — ) 2.40E-04 ( — ) 5.64E-05 ( — ) 5.44E-05 ( — )
40 7.85E-06 (5.13) 7.46E-06 (5.01) 7.69E-07 (6.20) 7.65E-07 (6.15)
80 2.32E-07 (5.08) 2.32E-07 (5.00) 1.17E-08 (6.04) 1.17E-08 (6.03)

160 7.13E-09 (5.03) 7.13E-09 (5.03) 1.84E-10 (5.99) 1.84E-10 (5.99)
320 2.55E-10 (4.81) 2.55E-10 (4.81) 3.73E-12 (5.63) 3.73E-12 (5.63)

TABLE 2. Orders of accuracy on refined grids: L1 and L∞ errors of density
in the Euler 2D system with smooth periodic initial condition.

AWENO-Z AWENO-Z-P AWENO-CU AWENO-CU-P
N ×N L1-error (order)
20×20 2.74E-02 ( — ) 2.03E-02 ( — ) 6.70E-03 ( — ) 4.60E-03 ( — )
40×40 8.74E-04 (4.97) 7.97E-04 (4.67) 6.32E-05 (6.73) 6.22E-05 (6.21)
80×80 2.62E-05 (5.06) 2.61E-05 (4.93) 8.78E-07 (6.17) 8.74E-07 (6.15)

160×160 8.29E-07 (4.98) 8.29E-07 (4.98) 1.33E-08 (6.04) 1.33E-08 (6.03)
320×320 2.61E-08 (4.99) 2.61E-08 (4.99) 2.20E-10 (5.92) 2.20E-10 (5.92)
N ×N L∞-error (order)
20×20 4.63E-02 ( — ) 3.43E-02 ( — ) 1.14E-02 ( — ) 1.00E-02 ( — )
40×40 1.40E-03 (5.05) 1.20E-03 (4.84) 1.28E-04 (6.48) 1.14E-04 (6.45)
80×80 4.34E-05 (5.01) 4.10E-05 (4.87) 1.34E-06 (6.57) 1.33E-06 (6.43)

160×160 1.33E-06 (5.03) 1.31E-06 (4.97) 2.14E-08 (5.97) 2.13E-08 (5.96)
320×320 4.14E-08 (5.01) 4.12E-08 (4.99) 3.49E-10 (5.93) 3.49E-10 (5.93)

Example 4.2. (Shock-entropy wave interaction) We apply the proposed AWENO schemes to
the shock-entropy wave interaction problem [7]. Since the solution includes an interaction
between shock waves and smooth flow features, it is a good model problem to illustrate the
superiority of the high-order accuracy. We solve this problem on the interval [−5, 5] with the
following initial condition

(ρ, u, p) =

{
(3.857143, 2.629369, 10.33333) for x ∈ [−5,−4),

(1 + ε sin(kx), 0, 1) for x ∈ [−4, 5].
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FIGURE 1. Density profiles of the shock-entropy interaction problem [7]
with 200 grid points at t = 1.8.

Here, ε = 0.2 is the amplitude of the entropy wave and k = 5 is wave number of the entropy
wave. The shock wave moving with Mach 3 induces wave trails of higher frequency than
the original wave number k. We solve this problem with CFL=0.5. We get the referenced
“exact” solution by fifth order WENO-JS scheme [9] with 3200 mesh points. The density ρ
profiles at t = 1.8 are shown in Fig. 1; the non-oscillatory properties can be confirmed. In the
magnified view, all AWENO schemes are improved with perturbational terms; the results of
LF are significantly improved. The AWENO-CU-P (LF or HLLC) shows good result even in
the very corse mesh.
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FIGURE 2. Density profiles of shock/turbulence interaction problem [43]
with 1500 grid points at t = 5.

In addition, we consider the modified shock wave and turbulence interaction problem [43]
with initial data:

(ρ, u, p) =

{
(1.515695, 0.523346, 1.80500) for x ∈ [−5,−4),

(1 + 0.1 sin(20πx), 0, 1) for x ∈ [−4, 5].

The simulation was performed until time t = 5 for the grid with ∆x = 1/150. The numerical
results are displayed in Fig. 2. The sinusoidal wave pattern behind the shock-entropy wave
interactions is better captured by AWENO-CU-P than other AWENO methods.
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Example 4.3. (Sod problem) The 1D shock tube test by Sod [44] uses the initial condition
given by

(ρ, u, p) =

{
(1, 0, 1) for x ∈ [0, 0.5),

(0.125, 0, 0.1) for x ∈ [0.5, 1],

with γ = 1.4. The exact solution is obtained from the exact Riemann solver reported by Toro
[45]. We compute this problem with ∆x = 1/200 until the final time t = 0.2. In Fig. 3,
the density distributions ρ predicted by the six AWENO schemes are compared with the exact
solution; all perturbational AWENO schemes have no oscillation near shock or contact wave.
We can say that new tunable functions φ5 and φ6 successfully control the high order derivative
terms while maintaining the non-oscillatory properties. The perturbational AWENO schemes
produce better results when compared to their original schemes; the AWENO-CU-P produces
best results for both flux functions.
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FIGURE 3. Density profiles of Sod problem [44] with 200 grid points at t = 0.2.

Example 4.4. (Lax problem) Now, we test 1D Euler equations for the Lax problem [46] which
is the initial data given by

(ρ, u, p) =

{
(0.445, 0.698, 3.528) for x ∈ [−5, 0),

(0.5, 0, 0.571) for x ∈ [0, 5]

with γ = 1.4 and ∆x = 10/200. In Fig. 4 we present the density profiles ρ of exact solution
(reported in Toro [45]) and the density profiles ρ computed by the AWENO schemes. We
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FIGURE 4. Density profiles of Lax problem [46] with 200 grid points at t = 1.6.

notice again that all AWENO schemes maintain non-oscillatory properties. We can see that the
AWENO-CU-P scheme (with LF or HLLC) shows very stiff transition near contact and shock
discontinuities.

Example 4.5. (Blast wave problem) The famous test problem proposed by Woodward and
Colella [47] is considered to investigate the behavior of proposed schemes under interactions
of two strong shock waves. The initial conditions of this problem are set by

(ρ, u, p) =


(1, 0, 1000) for x ∈ [0, 0.1),

(1, 0, 0.01) for x ∈ [0.1, 0.9],

(1, 0, 100) for x ∈ [0.9, 1].

The reflective wall boundary condition is applied to the both edges of the domain. The final
computational time is t = 0.038 with ∆x = 1/400. The reference solution is obtained from
the fifth-order WENO-JS scheme [9] with 3200 grid points. The density profiles ρ yielded by
AWENO schemes are presented in Fig. 5; all AWENO schemes maintain the non-oscillatory
properties even in very strong shockwave interactions. Each original AWENO scheme is im-
proved by perturbational terms. Also, the results of AWENO-Z-P and AWENO-CU-P are
closer to the reference solutions than the others. The AWENO-CU-P scheme achieves the
highest resolution in resolving the peak of the density profile for each flux function case.
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FIGURE 5. Density profiles of blast wave problem [47] with 400 grid points
at t = 0.038.

4.3. 2D Euler Systems. In this section, we present the numerical results to investigate be-
haviors of proposed AWENO schemes in 2D compressible Euler equations. We specify the
specific heat ratio γ = 1.4 for all 2D problems except the Rayleigh-Taylor instability problem.

Example 4.6. (Two-dimensional Riemann problem - configuration 3) We consider well-known
the third configuration of the 2D Riemann problems proposed in [48]. The square, [0, 1]×[0, 1],
computational domain is partitioned into four section by vertical line x = 0.8 and horizontal
line y = 0.8. The initial data on each quadrant is given as:

(ρ, u, v, p) =


(1.5, 0, 0, 1.5) for (x, y) ∈ [0.8, 1]× [0.8, 1],

(0.5323, 1.206, 0, 0.3) for (x, y) ∈ [0, 0.8]× [0.8, 1],

(0.138, 1.206, 1.206, 0.029) for (x, y) ∈ [0, 0.8]× [0, 0.8],

(0.5323, 0, 1.206, 0.3) for (x, y) ∈ [0.8, 1]× [0, 0.8]

and all boundaries are treated as outflow. We solve this problem until time t = 0.8 and compare
the density contours of AWENO schemes in Fig. 6.

We can see that all schemes successfully produced solutions without non-physical oscilla-
tions near contact and shock discontinuities. Also, the AWENO-CU-P scheme captures the
instability near the jet with high resolution. The vortex roll-ups on the slip line are sensitively
affected by the numerical dissipation; the AWENO-HLLC-CU-P is the least dispersed among
the proposed AWENO methods.
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Example 4.7. (Two-dimensional Riemann problem - configuration 6) We now solve configu-
ration 6 of the 2D Riemann problems [48]. The square, [0, 1] × [0, 1], computational domain
is and partitioned by vertical line x = 0.5 and horizontal line y = 0.5. The initial data on each
quadrant is given as:

(ρ, u, v, p) =


(1.0, 0.750,−0.50, 1.0) for (x, y) ∈ [0.8, 1]× [0.5, 1],

(2.0, 0.750, 0.50, 1.0) for (x, y) ∈ [0, 0.8]× [0.5, 1],

(1.0,−0.750, 0.50, 1.0) for (x, y) ∈ [0, 0.8]× [0, 0.5],

(3.0,−0.750,−0.50, 1.0) for (x, y) ∈ [0.8, 1]× [0, 0.5].

We computed this problem until the final time t = 1.0 and displayed the density contour
lines in Fig. 7. The perturbational schemes have more rich and fine structures around the center
of vortex when they are compared with those original AWENO schemes; the AWENO-CU-P
schemes generates many and large rollups along the interfaces.

Example 4.8. (Two-dimensional Rayleigh-Taylor instability) Many authors (e.g., [49, 50])
have simulated this problem to check the numerical dissipation of their high-order accurate
schemes. The computational area, [0, 0.25] × [0, 1], is divided by 160 × 640 meshes. The
initial value is given by

(ρ, u, v, p) =


(2, 0,−0.025

√
5p

3ρ
cos(8πx), 2y + 1) for y ∈ [0, 0.5),

(1, 0,−0.025

√
5p

3ρ
cos(8πx), y + 1.5) for y ∈ [0.5, 1].

This problem simulates interfacial instability caused by two fluids with different densities.
The heavier gas penetrates to the lighter gas and it is accelerated by gravitational force. The
gravitational effect can be emulated by adding source term (0, 0, ρ, ρv) to the right side of
Euler equation. Only for this problems, the specific heat ratio γ = 5/3 is considered. The
right and left boundaries are treated as reflective wall; speed of x direction, u is reversed along
the each boundary. Top and bottom boundaries are assigned as (2, 0, 0, 1) and (1, 0, 0, 2.5),
respectively. The results at time t = 1.95 are displayed in Fig. 8. According to analysis in
[49, 50], the details of complex structures originated in physical instability are affected by the
numerical viscosity of specific scheme. The appearance of the fine structures near interface is
an indicator of the inherent numerical viscosity. The HLLC cases have much more vortexes
because the HLLC flux function is less dissipative. The perturbational schemes have more
vortexes near the plume. The AWENO-CU-P scheme makes regular vortexes at the interface
whereas the AWENO-CU scheme makes irregular vortexes. We can say that the perturbational
terms greatly improve contact discontinuous resolution.

Example 4.9. (Double Mach reflection of strong shock waves) This problem is introduced
by Woodward and Colella [47]. The Mach 10 high speed flow crashes into the oblique ramp
with 60◦; multiple shock wave reflection and Mach stem generates complex structures and slip
lines. We model this problem in the computational domain [0, 4] × [0, 1]. The oblique ramp



IMPROVED AWENO-P 223

is aligned along the horizontal axis and the edge of ramp is posed at the point (x, y) = (16 , 0).
The Mach 10 right-moving flow with density ρ = 1.4 and pressure p = 1 is imposed in front
of edge and exact post-shock condition is applied behind the edge. The upper boundary is
treated as moving shock wave with Mach 10. The left and right boundaries use inflow and
outflow boundary conditions, respectively. The simulation was performed until the final time
t = 0.2 with 1200 × 300 grid. The density contour around the Mach stem are presented in
Fig. 9. We can clearly notice that the perturbational schemes have the better resolution near
the Kelvin–Helmholtz vortex; the AWENO-CU-P shows good resolution even in corse mesh.
Additionally, all perturbational schemes capture strong shockwave and Mach stem without
non-physical oscillations.

Example 4.10. (Explosion) We compute the explosion problem proposed in [45] (see also
[51]) which is a circularly symmetric problem with initial circular region of high density and
pressure. We compute on the domain [−1.5, 1.5]× [−1.5, 1.5] and center of the high pressure
region is posed on the origin. The initial conditions are

(ρ, u, v, p) =

{
(1.000, 0, 0, 1.0) if x2 + y2 < 0.16,

(0.125, 0, 0, 0.1) otherwise.

We compute the solution until the final time t = 3.2 with 800×800 mesh grids and display the
density contour obtained from AWENO schemes in Fig. 10. The numerical result produced
by AWENO-CU-P is much more “curlier” than that of other methods at the contact surface.
The AWENO-CU-P has substantially reduced dissipation when compared to other AWENO
schemes.

5. CONCLUSION

In this paper, we proposed improved fifth- and sixth-order AWENO methods which add
perturbational terms to the conserved vectors for the numerical solution of the hyperbolic con-
servation laws. The proposed schemes maintain the fifth- and sixth-order accuracy in smooth
regions even at critical points and produce high resolutions around singularities of the deriva-
tives. Extensive numerical experiments have been presented to explain the effectiveness and
less-dissipation of the new schemes. Also, proposed schemes resolve discontinuities sharply
while maintaining an essentially non-oscillatory performance.

6. APPENDIX

• The Lax-Friedrichs (LF) flux. The LF flux is defined by

f̂LF
j+1/2(q

−, q+) =
1

2
[(f(q−) + f(q+))− α(q+ − q−)],

where α is taken as an upper bound over the whole line for |f ′(q)| in the scalar case, or the
absolute value of eigenvalues of the Jacobian for the system case.
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• The HLLC flux. The HLLC flux is a modified version of the HLL flux, whereby the missing
contact and shear waves are restored. The HLLC flux for the Euler equations q = (ρ, ρu,E)T

is given by

f̂HLLC
j+1/2 (q

−, q+) =


f(q−) if 0 ≤ s−,

f(q−) + s−(q0− − q−) if s− ≤ s0,

f(q+) + s+(q0+ − q+) if s0 ≤ s+,

f(q+) if s+ ≤ 0,

where, by defining the averaging operation f̄ = 1
2(f

+ + f−) and the difference operation
∆f = f+ − f−,

q0± = ρ0±
s± − u±

s± − s0

 1
s0

E±

ρ± + (s0 − u±)
(
s0 + p±

s±−u±

)
 ,

p0 = p̄− 1

2
∆ρ̄c̄, s0 = ū− 1

2

∆p

ρ̄c̄
, s± = u± ± c±Q±,

Q± =

1 if p0 ≤ p±,(
1 + γ+1

2γ ( p0

p± − 1)
)1/2

if p± ≤ p0.
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(a) AWENO-LF-Z (b) AWENO-HLLC-Z

(c) AWENO-LF-Z-P (d) AWENO-HLLC-Z-P

(e) AWENO-LF-CU (f) AWENO-HLLC-CU

(g) AWENO-LF-CU-P (h) AWENO-HLLC-CU-P

FIGURE 6. 2D Riemann problem-configuration 3 at t = 0.8 (density profiles,
300× 300).
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(a) AWENO-LF-Z (b) AWENO-HLLC-Z

(c) AWENO-LF-Z-P (d) AWENO-HLLC-Z-P

(e) AWENO-LF-CU (f) AWENO-HLLC-CU

(g) AWENO-LF-CU-P (f) AWENO-HLLC-CU-P

FIGURE 7. 2D Riemann problem-configuration 6 at t = 1.0 (density profiles,
800× 800).
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(a)AWENO-LF-Z (b)AWENO-LF-Z-P (c)AWENO-LF-CU (d)AWENO-LF-CU-P

(e)AWENO-HLLC-Z (f)AWENO-HLLC-Z-P (g)AWENO-HLLC-CU (h)AWENO-HLLC-CU-P

FIGURE 8. Rayleigh-Taylor instability at t = 1.95 (density profiles, 160× 640).
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(a) AWENO-LF-Z (b) AWENO-HLLC-Z

(c) AWENO-LF-Z-P (d) AWENO-HLLC-Z-P

(e) AWENO-LF-CU (f) AWENO-HLLC-CU

(g) AWENO-LF-CU-P (h) AWENO-HLLC-CU-P

FIGURE 9. Double Mach reflection of a strong shock [47] at t = 0.2 (density
profiles, 1200× 300).
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(a) AWENO-LF-Z (b) AWENO-HLLC-Z

(c) AWENO-LF-Z-P (d) AWENO-HLLC-Z-P

(e) AWENO-LF-CU (f) AWENO-HLLC-CU

(g) AWENO-LF-CU-P (h) AWENO-HLLC-CU-P

FIGURE 10. Explosion problem [45] at t = 3.2 (density profiles of first
quadrant, 800× 800).


