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ABSTRACT. The unsteady dynamics of the starting flow of a flat plate is studied by using a
vortex shedding model. The model describes the body and separated vortex from the trailing
edge of the plate by vortex sheets, retaining a singularity at the leading edge. The model is
applied to simulate the flow of an accelerated plate for small angles of attack. For numerical
computations, we take two representative cases of the translational velocity of a plate: impulsive
translation and uniform acceleration. The model successfully demonstrates the formation of
wakes shed from the plate. The wake behind the plate is stronger for a larger angle of attack.
Predictions for the lifting force from the model are in agreement with results of Navier-Stokes
simulations.

1. INTRODUCTION

The flight of insects and birds has attracted much attention for the past decades owing to its
potential applications to micro air vehicles. It has been shown that the conventional aerody-
namic theory based on steady flows cannot explain the generation of large lift by small insects,
and therefore, unsteady aerodynamics should be considered. Unsteady vortex separation dur-
ing the thrust stroke of the wing motion plays a crucial role in the production of forces in the
flapping flight [1]. At high Reynolds numbers, the diffusion of vorticity is negligible compared
with its inertial motion. Thus the evolution of the separated flow can be approximated by the
inviscid vortex particles.

The unsteady separated flows are accurately modeled by spiral vortex sheets, where a con-
tinuous vortex distribution is shed and advected by the flow. In this approach, both the solid
body and separated vortices are described as vortex sheets [2]. Jones [3] developed a model for
a moving rigid body and applied it to an accelerating plate with large angles. In this model, a
key step in the solution procedure is to impose the unsteady Kutta condition, which regularizes
a solution at the edges of the body. Several different forms of the unsteady Kutta condition
were presented in this model [2, 3, 4]. The vortex shedding model has been extended to var-
ious problems of vortex-body interactions, including falling bodies [5, 6], flapping flags [7],
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hovering and insect flights [8, 9, 10, 11], and fish-like swimming [4, 12, 13]. Note that similar
types of vortex shedding model based on the complex conformal mapping [14], or discrete
point vortices [15] were also presented.

In this paper, we investigate the unsteady dynamics of an accelerating flat plate for small
angles of attack, by using the vortex shedding model. The dynamics of an accelerating plate
was previously studied by using this model, but mainly for large angles of attack [3, 16]. In
the regime of small angles of attack, the model encounters difficulties in the computation;
the leading edge vortex is located close to the body, and the computation becomes unstable.
Furthermore, the condition of vortex shedding that moves away from the plate edge is violated,
which results in the breakdown of the computation. For these reasons, the computation of the
model for small angles of incidence usually suppresses the vortex shedding at the leading edge
of a body [6, 13], allowing a singularity there. The circulation at the leading edge is small when
the angle of attack is small, and thus the suppression of vortex shedding at the leading edge is
a reasonable approximation. Nevertheless, it has not been addressed whether the model under
this approximation describes the aerodynamic forces such as lift and drag appropriately. The
main purpose of this paper is to validate the model for small angles of attack, by examining the
unsteady dynamics of the starting flow including the aerodynamic force.

In Section 2, we describe the inviscid vortex shedding model for an accelerated plate for a
small angle of attack. In Section 3, the numerical method of the model is presented. In Section
4, we present numerical results for the starting flow of a plate, for two representative cases of
the translational velocity of a plate. Section 5 gives conclusion.

2. VORTEX SHEDDING MODEL

We consider the two-dimensional flow of a flat plate with unsteady translational motion. We
assume that the plate is of length L = 2 and zero thickness, and the fluid is incompressible
inviscid. Figure 1(a) illustrates the flow of vortex shedding of the plate motion in a laboratory
frame of reference. At time t = 0, the center of the plate is located in x = 0 with an angle θ
with the x-axis. For t > 0, the plate translates with velocity U(t) with a fixed angle.

We assume that free vortex sheet is separated from the trailing edge of the plate, and sup-
press the vortex shedding at the leading edge. Recall that a vortex sheet is a surface across
which the tangential velocity is discontinuous. The plate is also regarded as a bound vortex
sheet. The free vortex sheet is denoted by ζ+(Γ, t) where Γ represents the circulation as a La-
grangian parameter. Γ+(t) denote the total circulation of the free vortex sheet emanating from
the trailing edge of the plate. The plate is parameterized by the arc-length s, −L/2 ≤ s ≤ L/2,
and is expressed as

ζ(s, t) = c(t) + seiθ,

where c(t) denotes the location of the center of mass of the plate.
We introduce the body frame of reference which has its origin at the center of mass of the

body. (See Fig. 1(b).) The plate in the laboratory frame ζ(s, t) is related to the body frame
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FIGURE 1. Schematic of vortex shedding of a plate: (a) laboratory frame, and
(b) body frame

parametrization s = (ζ(s, t)− c(t))e−iθ. We denote z+(Γ, t) as the position of the free vortex
sheet in the body frame, where they are given by z+(Γ, t) = (ζ+(s, t)− c(t))e−iθ.

2.1. Equation for free vortex sheet. The evolution of the free vortex sheet is described by
the Birkhoff-Rott equation [17]:

∂z+
∂t

(Γ, t) = w̄(z+(Γ, t), t)− ċ(t)e−iθ, (2.1)

where w̄(z, t) represents the velocity field in the body frame of reference, and the bar represents
the complex conjugate. We define the vortex sheet strength γ(s, t) as the jump in the tangential
velocity across the bound vortex sheet. The velocity w(z, t) is then expressed as the boundary
integral

w(z, t) =
1

2πi

∫ 1

−1

γ(λ, t)

λ− z
dλ+

1

2πi

∫ Γ+(t)

0
K(z+(Λ, t)− z)dΛ, (2.2)

where K(z) = 1/z is the singular kernel. The first integral in Eq. (2.2) represents the contri-
bution from the bound vortex sheet, and the second integral represents the contribution from
the free vortex sheet. The edge circulation Γ+(t) and the bound vortex sheet strength γ(s, t)
should be determined as part of the solution.

2.2. Equations for the edge circulation. To find the bound vortex sheet strength and edge
circulation, we apply the kinematic condition and unsteady Kutta condition. The unsteady
Kutta condition is imposed to ensure that the fluid velocity at the edge of the bound vortex
sheet remains bounded [3, 4].

The kinematic condition means that fluid does not penetrate the plate on either side. That is
to say, the normal component of the fluid velocity on the either side of the body should be the
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same as the normal component of the body’s velocity. From Jones [4], the kinematic condition
gives the following equation:

1

π

∫ 1

−1

γ(λ, t)

λ− s
dλ = f(s, t), for − 1 ≤ s ≤ 1, (2.3)

where the right hand side takes the form

f(s, t) = 2ν(s, t)− 1

π

∫ Γ+(t)

0
Re {K(z+(Λ, t)− s)} dΛ. (2.4)

Here, ν(s, t) is the normal component of the velocity of the plate and is given by

ν(s, t) = Im{ċ(t)e−iθ}.
The integral equation (2.3) can be solved analytically, but the solution is not unique [18]. By

imposing the Kutta condition at the trailing edge of the plate,

γ(−1, t) = 0,

we have a solution

γ(s, t) = − 1

π

√
1 + s

1− s

∫ 1

−1

√
1− λ

1 + λ

f(λ, t)

λ− s
dλ.

This solution contains an inverse square root singularity at the leading edge of the plate, s = 1.
We define the bounded part of γ(s, t) by

γ(s, t) =
σ(s, t)√
1− s2

.

Then, the regular part of the solution is expressed as

σ(s, t) = − 1

π
(1 + s)

∫ 1

−1

√
1− λ

1 + λ

f(λ, t)

λ− s
dλ. (2.5)

From the conservation of the total circulation of the flow, we have∫ 1

−1
γ(s, t)ds =

∫ 1

−1

σ(s, t)√
1− s2

ds = −Γ+(t). (2.6)

Then, Eqs. (2.5) and (2.6) give a system of equations for the unknowns σ(s, t) and Γ+(t).

2.3. Force. The force acting on the body is the pressure difference across the two sides of the
plate, since the viscous effects are neglected in our model. Thus, the normal force is expressed
as

F(t) = −ieiθ
∫ 1

−1
[p(λ, t)] dλ,

where the square bracket represents the jump across the body. The pressure difference across
the two sides of the body is given by

[p(s, t)] = −dΓ

dt
(s, t)− γ(s, t)(µ(s, t)− τ(t)).
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Here, µ(s, t) is the tangential component of the average of the fluid velocities on either side of
the body, which is of the form

µ(s, t) =
1

2π

∫ Γ+(t)

0
Im {K(z+(Λ, t)− s)} dΛ, (2.7)

and τ(t) = Re{ċ(t)e−iθ} is the tangential component of the velocity of the body. The circula-
tion on the body is written as

Γ(s, t) = Γ+(t) +

∫ s

−1
γ(λ, t)dλ.

3. NUMERICAL METHOD

3.1. δ-regularization. The vortex sheet evolution suffers from the Kelvin-Helmholtz instabil-
ity for all disturbance wavenumbers [17]. It is well known that in a free shear flow, the vortex
sheet develops a singularity at finite time. To circumvent the ill-posedness, the vortex blob
method in which the singular kernel K(z) = 1/z is replaced by a smoothed kernel [19, 20] is
commonly applied. A widely used blob-regularization is to give a constant parameter δ in the
kernel,

Kδ(z) =
z̄

zz̄ + δ2
.

We replace K(z) in Eqs. (2.2), (2.4), and (2.7) by the regularized kernel Kδ(z). Note that the
blob-regularization should not be applied to the bound vortex sheet, because such regularization
makes the equation ill-posed. In our simulations, the regularization parameter is set to δ/L =
0.1.

3.2. Discretization and time integration. For the discretization of the vortex sheets and the
time integration of the equations, we follow a similar procedure as Jones [3] or Shukla and
Eldredge [4] and here briefly summarize it. The free and bound vortex sheets are discretized
by N lagrangian point vortices. Using the circulation Γ as a Lagrangian variable, we denote the
location of the free vortex sheet at the current time tn by znj = z+(Γj , t

n) for Q+1 ≤ j ≤ N .
The Lagrangian indices of the trailing and leading edges of the bound vortex sheet are denoted
by the interger P and Q, respectively; here, P = 1, because of no vortex shedding at the leading
edge. The bound vortex sheet is discretized by using Gauss-Lobatto collocation nodes [3],
which are given by

sj =
1

2

[
1− cos

(
π(j − P )

Q− P

)]
, P ≤ j ≤ Q.

The edge circulation is expressed as Γn
Q = Γ+(t

n).
After discretization, Eqs. (2.5) and (2.6) are combined to determine Γn

Q. Then, σn
j for

P + 1 ≤ j ≤ Q are obtained, where σn
j represents the discrete approximation of the regular

part of the bound vortex sheet strength. (Remind γQ = σQ = 0, and γP = ∞, σP < ∞.)
The approximation of the right hand side of Eq. (2.5) involves the integrand with a square
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root singularity at the end. A special numerical technique is applied to calculate this quantity
with high accuracy. The detail of this technique can be found in the appendix of Shukla and
Eldredge [4].

We assume that znj are given at time tn. At each time step, we first determine Γn
Q and σn

j

by solving Eqs. (2.5) and (2.6), and then calculate the velocity of the free vortex sheet from
Eq. (2.1). In Eq. (2.2), the integration over the free vortex sheet is approximated by using
the trapezoidal rule, while the integration for the bound vortex sheet is obtained by using the
Clenshaw-Curtis quadrature, which is spectrally accurate. Evaluating these quantities, we are
ready for time-integration. We employ the classical fourth-order Runge-Kutta method for time-
integration to obtain zn+1

j . A new point vortex is released from the trailing edge of the body at
the end of each time step.

3.3. Initial condition. The solution procedure of the equations requires an initial condition at
a time t1 > 0. We use the self-similar solution of the free vortex sheet separated from a plate
for the initial condition [3]. A starting point vorticex with zero circulation ΓN = 0 is placed
initially and its locations zN is given by the small-time asymptotic expansion of the self-similar
solution.

4. RESULTS

We apply the vortex shedding model to the starting flow of a flat plate. We consider the plate
velocity of the form U(t) = tm. For numerical computations, we take two cases of the velocity
profile, an impulsive translation U(t) = 1 and uniform acceleration U(t) = t. For both cases,
the inclined angle of the plate is chosen as θ = 10◦ and 30◦, as representative cases for small
angles of attack. The number of points is initially set to N = 62, and the time step is set to
∆t = 0.01.

4.1. Impulsive motion. We first consider the impulsive translational motion U(t) = 1. Fig-
ures 2 and 3 show the evolution of vortex for the impulsive motion with θ = 10◦ and 30◦,
respectively. For both cases, the trailing edge vortices move little. We find that the vortex for
θ = 30◦ is stronger than that for θ = 10◦. The fine structure of the wake is well resolved by
the spiral vortex sheet.

Figure 4 plots the growth of the edge circulation for the impulsive motion with θ = 10◦ and
30◦. The edge circulation Γ+ decreases slightly initially and then increases for both cases. The
edge circulation for θ = 30◦ increases much faster than that for θ = 10◦.

We compare the lifting force of the model with results of full numerical simulations. Figure 5
plots the lift coefficient for θ = 10◦ and 30◦. The lift coefficient is defined as

CL =
2Fy

ρU(t)2L
,

where Fy denotes the y-component of the normal force acting on the body, and ρ denotes the
density of fluid. In Fig. 5, the solid curve represents the prediction of our model. In Fig. 5(a),
the circle represents the result of the viscous vortex particle method for Reynolds number
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FIGURE 2. Evolution of vortex for the impulsively started plate with θ = 10◦.
Times are Ut/L = 1, 2, 3 from top to bottom.
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FIGURE 3. Evolution of vortex for the impulsively started plate with θ = 30◦.
Times are Ut/L = 1, 2, 3 from top to bottom.
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FIGURE 4. Growth of the edge circulation for the impulsively started plate
with θ = 10◦ and 30◦.

1, 000 by Wang and Eldredge [21]. For θ = 10◦, the prediction of the model for lift is in good
agreement with the result of the full numerical simulation.

In Fig. 5(b), the circle represents the result of the Navier-Stokes simulation for Reynolds
number 200 by Chen et. al [22]. For θ = 30◦, the lift of the model is in agreement with the
result of the full numerical simulation at t < 2, but there are some differences between the two
results thereafter. These differences may be due to viscous diffusion of vortices of the Navier-
Stokes simulation at late times. The agreement of the model with the Navier-Stokes simulation
would be better for larger Reynolds number, but that data is not available in the literature. We
observe that the lifting force for the plate of θ = 30◦ is about three times larger than that for
θ = 10◦.

4.2. Motion of uniform acceleration. We next consider the uniformly accelerated plate with
U(t) = t. Figure 6 shows the evolution of vortex for the uniformly accelerated plate with
θ = 10◦ and 30◦, at three chord lengths of displacement. We see that the roll-ups of wakes
from the uniformly acceleration are weaker than those from the impulsive start in Figs. 2 and 3,
at the same chord length.

Figure 7 plots the growth of the edge circulation for the uniformly accelerated plate with
θ = 10◦ and 30◦. Here, we define the dimensionless time as c(t)/L, by using chord length
of displacement, in order to be generally insensitive to the instantaneous velocity of the plate.
In Fig. 7, the edge circulation initially decreases rapidly and then increases. The dimensional
circulation is finite at t = 0, but the dimensionless circulation becomes infinite, from the
scaling by the instantaneous velocity U(t). The circulation for θ = 30◦ is much larger than
that for θ = 10◦, similar to the impulsively started motion.
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FIGURE 5. Lift coefficient for the impulsively started plate with (a) θ = 10◦

and (b) θ = 30◦. The solid curve represents the result of our model. In (a), the
circle represents the result of the viscous vortex particle method for Reynolds
number 1, 000 by Wang and Eldredge [21]. In (b), the circle represents the
result of the Navier-Stokes simulation for Reynolds number 200 by Chen et.
al [22].

Figure 8 shows the lift coefficient for the uniformly accelerated plate for θ = 10◦ and 30◦.
The solid curve represents the prediction of our model. The lift coefficient is infinite at t = 0,
from the same reason as the dimensionless circulation. The lift coefficient for θ = 30◦ is about
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FIGURE 6. Evolution of vortex for the uniformly accelerated plate, at
c(t)/L = 3. (a) θ = 10◦, and (b) θ = 30◦.
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FIGURE 7. Growth of edge circulation for the uniformly accelerated plate
with θ = 10◦ and 30◦.

twice larger than that for θ = 10◦. In Fig. 8, the results of the Navier-Stokes simulation for
Reynolds number 100 by Chen et. al [22] are also given, which are denoted by circles. They
plotted the “augmented lift coefficient” by subtracting the added-mass component from lift.
Here, we have readded that component. The lifts of the model agree well with the Navier-
Stokes simulations, with the rapid decrease from the infinite force initially.
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FIGURE 8. Lift coefficient for the uniformly accelerated plate with (a) θ =
10◦ and (b) θ = 30◦. The solid curve represents the result of our model.
The circles represent the results of the Navier-Stokes simulation for Reynolds
number 100.

5. CONCLUSION

We have investigated the unsteady dynamics of an accelerated flat plate for small angles
of attack by using the vortex shedding model. The model describes the body and separated
vortex from the trailing edge by vortex sheets, retaining a singularity at the leading edge. The
numerical computation of the model successfully demonstrates the formation of wake shed
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from the plate. We find that the wake is stronger for a larger angle of attack, in the flow regime
of θ ≤ 30◦ that we considered.

We have also examined the aerodynamic force acting on the body. The predictions of the
model for lift are in agreement with the results of the Navier-Stokes simulations. Therefore,
the vortex shedding model which is singular at the leading edge not only qualitatively describes
the vortex shedding process of the starting flow for small angles of attack, but also provides a
quantitative prediction for the aerodynamic force.
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