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ABSTRACT. We study the numerical analysis for the Cahn–Hilliard (CH) equation using the
decoupled projection (DP) method. The CH equation is a fourth order nonlinear partial dif-
ferential equation that is hard to solve. Therefore, various of numerical schemes have been
proposed to solve the CH equation. To verify the relation of each existing scheme for the
CH equation, we consider the DP method for linear convex splitting schemes. We present the
numerical experiments to demonstrate our analysis. Throughout this study, it is expected to
construct a novel numerical scheme using the relation with existing numerical schemes.

1. INTRODUCTION

The Cahn–Hillard (CH) equation is a fourth order partial difference equation which has non-
linear term and biharmonic term. The CH equation was originated from the spinodal decom-
position in a binary alloy which is a kind of the phase separation [1, 2]. The CH equation is as
follows :

∂ϕ(x, t)

∂t
= ∆µ(x, t), x ∈ Ω, t ∈ (0, T ),

µ(x, t) = F ′ (ϕ(x, t))− ϵ2∆ϕ(x, t)

where Ω ⊂ Rd for d = 1, 2, 3 is a domain, and ϵ is a positive constant which is related to
interfacial energy. In addition, T is a final time and ∆ is the Laplace operator. Moreover, ϕ
is the scalar field which is difference between the concentration of the binary alloys and µ is a
chemical potential [3]. To make it easier to describe, we will denote ϕ(x, t) as ϕ. In addition,
µ is written in a same manner. Moreover, F (ϕ) = 0.25

(
ϕ2 − 1

)2 is the Helmholtz free energy
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which has a double well potential. The CH equation has the homogeneous Neumann condition
which is called the no flux boundary condition. it is given as follows:

∂ϕ

∂n
=

∂µ

∂n
= 0 on ∂Ω.

where n is the outward normal vector on ∂Ω. We denote that ∂ϕ/∂n = n · ∇ϕ.
The CH equation has been widely applied to various scientific fields such as image segmen-

tation, volume reconstruction, tumor growth simulation, topology optimization [4]. However,
because it is difficult to solve, one of main scientific topic for the CH equation is construc-
tion of the numerical scheme which is unconditional stable, accurate, and convenient for the
implementation. Therefore, various of numerical schemes have been proposed to solve the
CH equation. In this work, we consider some convex splitting methods and the decoupled
projection method. The decoupled projection (DP) method is a fractional step method which
uses the block LU decomposition and the linear approximation [5]. Because the main purpose
is constructing it more convenient to implement, the DP method was treated with the com-
plex governing equation such the incompressible NS equation and natural convection model
[7, 8]. In addition, the convex splitting methods are constructed based on the contractive and
expansive parts of the free energy of a governing equation [6]. Furthermore, the constructed
numerical scheme can be unconditionally energy-gradient stable by the properties of convexity
and concavity. The stability means that the proposed numerical schemes are satisfying the total
energy dissipation law for any time step δt [3].

The contents this paper are as follows. In Section 2, we present some proof of properties
for the CH equation. Numerical analysis is concerned in Section 3. Numerical simulations are
presented in Section 4. The conclusion is given in Section 5.

2. GOVERNING EQUATION

In this section, we present some properties of the CH equation which are the gradient flow,
the total energy dissipation, and the total mass preserving. To prove the properties, we use the
integration by part with the no flux boundary condition.

Definition 2.1. We define the following inner products:

(i) (u, v)2 =
∫
Ω uvdx.

(ii) (u, v)H−1 = (∇u,∇v)2 = (u,−∆v)2.

Theorem 2.2. The CH equation is the H−1 gradient flow of the Ginzburg–Landau free energy
functional

E(ϕ) =
∫
Ω

(
F (ϕ) +

ϵ2

2
|∇ϕ|2

)
dx.

The CH equation is derived as follows:

ϕt = −gradE(ϕ) = ∆

(
δE(ϕ)
δϕ

)
.
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Proof. For every v ∈ C∞
c (Ω),

δE(ϕ)
δϕ

=
d

dθ
E(ϕ+ θv)

∣∣∣∣∣
θ=0

= lim
θ→0

1

θ
(E(ϕ+ θv)− E(ϕ)) =

∫
Ω

(
F ′(ϕ)− ϵ2∆ϕ

)
vdx,

(2.1)

where δE(ϕ)/δϕ = F ′(ϕ)− ϵ2∆ϕ is the variational derivative. Put −∆ϕv instead of v in Eq.
(2.1). Then,∫
Ω

(
F ′(ϕ)− ϵ2∆ϕ

)
vdx =

∫
Ω
−∆ϕv

(
F ′(ϕ)− ϵ2∆ϕ

)
dx =

∫
Ω
∇
(
F ′(ϕ)− ϵ2∆ϕ

)
· ∇ϕvdx

=
(
∇
(
F ′(ϕ)− ϵ2∆ϕ

)
,∇ϕv

)
2
=
(
−∆

(
F ′(ϕ)− ϵ2∆ϕ

)
, ϕv

)
2

=
(
F ′(ϕ)− ϵ2∆ϕ, ϕv

)
H−1 .

Because the ϕv is chosen as the test function, we can say that gradE(ϕ) = −∆
(
F ′(ϕ)− ϵ2∆ϕ

)
.

□

Theorem 2.3. The CH equation is satisfying the total energy dissipation law:

d

dt
E(ϕ) ≤ 0.

Proof. When differentiating the energy functional E(ϕ) with respect to time t, we can derive
as follows:

d

dt
E(ϕ) =

∫
Ω

(
F ′(ϕ)− ϵ2∆ϕ

)
ϕtdx =

∫
Ω

(
F ′(ϕ)− ϵ2∆ϕ

)
∆
(
F ′(ϕ)− ϵ2∆ϕ

)
dx

=

∫
∂Ω

(
n · ∇

(
F ′(ϕ)− ϵ2∆ϕ

)) (
F ′(ϕ)− ϵ2∆ϕ

)
dS−

∫
Ω

∣∣∇ (F ′(ϕ)− ϵ2∆ϕ
)∣∣2 dx

= −
∫
Ω

∣∣∇ (F ′(ϕ)− ϵ2∆ϕ
)∣∣2 dx ≤ 0.

Therefore, the CH equation is satisfying the energy dissipation law. □

Theorem 2.4. The CH equation is satisfying the mass preserving property:

d

dt

∫
Ω
ϕdx = 0.

Proof. It can be proved using the divergence theorem and the homogeneous Neumann bound-
ary condition,

d

dt

∫
Ω
ϕdx =

∫
Ω
ϕtdx =

∫
Ω
∆µdx =

∫
∂Ω

n · ∇µdS = 0.

Therefore, the total mass of the CH equation is preserved with time. □
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3. NUMERICAL ANALYSIS

In this section, we discuss about the DP method for some unconditional gradient stable
schemes which are based on the linear convex splitting scheme. To discuss these numerical
schemes, let us consider the following numerical scheme:

ϕn+1 − ϕn

δt
= ∆µn+1,

µn+1 = fn + α
(
ϕn+1 − ϕn

)
− ϵ2∆ϕn+1 (3.1)

where ϕn is a numerical approximation of the ϕ at time nδt. In addition, µn is used in a same
manner. For simplicity, we use fn as F ′(ϕn). δt is used as the time step and α is chosen
in the closed interval [0, 2]. The considered numerical scheme is called as the semi implicit
Euler’s (SI) one for α = 0. Moreover, for α = 2, the considered numerical scheme is the
linear stabilized splitting (LSS) one. In this case, the numerical scheme is satisfying the unique
solvability, unconditionally energy gradient stable where ϕ is belong in the closed interval
[−1, 1] [2]. For space discretization, we use the Fourier spectral method which is almost exact
for space. The matrix formula for Eq. (3.1) can be written as follows:(

I −δt∆
ϵ2∆− αI I

)(
ϕn+1

µn+1

)
=

(
ϕn

fn − αϕn

)
. (3.2)

Here, I is the identity operator. That is, I(ϕ) = ϕ. Using the LU decomposition, we can
factorize Eq. (3.2) as follows:(

I 0
ϵ2∆ I

)(
I −δt∆
0 I+ δt∆

(
ϵ2∆− αI

))(ϕn+1

µn+1

)
=

(
ϕn

fn − αϕn

)
.

Let us consider that (
I −δt∆
0 I+ δt∆

(
ϵ2∆− αI

))(ϕn+1

µn+1

)
=

(
ϕ∗

µ∗

)
. (3.3)

Then, we have that (
I 0

ϵ2∆ I

)(
ϕ∗

µ∗

)
=

(
ϕn

fn − αϕn

)
. (3.4)

Equation (3.4) can be rewritten as

ϕ∗ = ϕn,

µ∗ = −ϵ2∆ϕ∗ + fn − αϕn.

In other words, µ∗ is fn −
(
ϵ2∆+ α

)
ϕn and ϕ∗ is ϕn. In addition, Eq. (3.3) can be written as

ϕn+1 = ϕ∗ + δt∆µ∗,

µn+1 =
[
I+ δt∆

(
ϵ2∆− αI

)]−1
µ∗. (3.5)
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Because ϕ∗ = ϕn and µ∗ = fn −
(
ϵ2∆+ α

)
ϕn, the numerical scheme (3.5) can be rewritten

as the following numerical procedure:

µ∗ = fn −
(
ϵ2∆+ α

)
ϕn,

µn+1 =
[
I+ δt∆

(
ϵ2∆− αI

)]−1
µ∗,

ϕn+1 = ϕn + δt∆µ∗.

Theorem 3.1. The considered numerical scheme for the CH equation is satisfying the mass
preserving property: ∫

Ω
ϕn+1dx =

∫
Ω
ϕndx

for every positive integer n.

Proof. It can be proved using the divergence theorem and the homogeneous Neumann bound-
ary condition,∫

Ω
ϕn+1dx =

∫
Ω
ϕndx+ δt

∫
Ω
∆µ∗dx =

∫
Ω
ϕndx+ δt

∫
∂Ω

n · ∇µ∗dS =

∫
Ω
ϕndx.

Therefore, the total mass of the CH equation is preserved with time. □

Remark 3.2. For β = αδt, the numerical scheme (3.1) can be written as follows,

ϕn+1 − ϕn

δt
= ∆

(
fn + β

(
ϕn+1 − ϕn

δt

)
− ϵ2∆ϕn+1

)
. (3.6)

Let us consider the viscous CH equation:

(1− γ)
∂ϕ

∂t
= ∆

(
F ′ (ϕ) + γ

∂ϕ

∂t
− ϵ2∆ϕ

)
(3.7)

where γ is the real valued constant belong to closed interval [0, 1]. Let τ = t
/
(1 − γ) and

ν = γ
/
(1− γ). Then, Eq. (3.7) can be rewritten for τ ,

∂ϕ(x, τ)

∂τ
= ∆

(
F ′ (ϕ(x, τ)) + ν

∂ϕ(x, τ)

∂τ
− ϵ2∆ϕ(x, τ)

)
.

For the viscous CH equation, let us consider the semi implicit Euler’s scheme,

ϕn+1 − ϕn

δτ
= ∆

(
fn + ν

(
ϕn+1 − ϕn

δτ

)
− ϵ2∆ϕn+1

)
. (3.8)

When ν and δτ are considered as β and δt each other, we can obtain that the Eq. (3.6) and
(3.8) are equivalent. From the results, we can observe that the linear convex splitting schemes
for the CH equation have the relation with the viscous CH equation.
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4. NUMERICAL EXPERIMENT

In this section, we present some numerical experiments to observe some properties of the
proposed numerical scheme for the CH equation in Fig. 1 and 2 which are temporal accuracy,
spatial accuracy, mass preserving, and energy dissipation. Moreover, the effect of viscosity
γ is also presented in Fig. 3. We use the computational domain Ω = (0, 1) in Fig. 1 and
Ω = (0, 1)2 in two dimensional (2D) space to perform the numerical experiment in Fig. 2–3.
Moreover, ϵm = mh/

(
2
√
2 tanh−1(0.9)

)
.

To confirm the accuracy of the considered numerical schemes, we perform the numerical test
in 1D space. Because the CH equation does not have the exact solution, we use the reference
solution using the sufficiently small time step δt in temporal accuracy and the grid size h for
spatial accuracy. Here, the initial condition cos(2πx) is used. In addition, to measure the

error, we use the l2 error. That is, ∥e∥2 =
√∑Nx

i=1 e
2
i where e is difference between numerical

solution and exact solution and ei is numerical approximation at i-th node. Here, the grid size
h is 2−7. the interface thickness ϵ and the final time T are used as ϵ4 and 0.0048 each other.
The reference solution is considered with the time step δtref = 2−21. In Figure 1(a), the time
step δt is used as 2m for m = −20, . . . ,−3. From the Fig. 1(a), we can observe that the
considered schemes have the first order accuracy for the time. Moreover, to concern the spatial
accuracy, we use the time step δt = 2−20, total iteration Nt = 40000, ϵ = 0.01 in Fig. 1(b).
The reference solution is considered with the grid size href = 2−8. In Figure 1(b), the grid
size h is used as 2m for m = −8, . . . ,−1. Figure 1(b) presents that the considered schemes
have the spectral order accuracy for the space. We can say that the DP method keeps for the
accuracy in time and space each other from the Fig. 1. To present the mass preserving and
energy stability in Fig. 2, let us define the discrete mass Mn

h and discrete energy En
h in 2D

space each other:

Mn
h = h2

Ny∑
j=1

Nx∑
i=1

ϕn
ij ,

En
h = h2

 Ny∑
j=1

Nx∑
i=1

F (ϕn
ij) +

ϵ2

2

Ny−1∑
j=1

Nx∑
i=1

(
ϕn
i,j+1 − ϕn

ij

h

)2

+
ϵ2

2

Ny∑
j=1

Nx−1∑
i=1

(
ϕn
i+1,j − ϕn

ij

h

)2


where ϕn
ij is the numerical approximation at i-th node and j-th node in x-, y-directions each

other. The initial condition is used as 0.1rand(x, y) where rand(x, y) is random valued function
between −1 and 1. Here, the number of grid Nx, Ny and grid size h are considered as Nx =
Ny = 128 and h = 1/128. The time step δt and the total iteration time Nt are used as 30h2 and
300 each other. Moreover, the interfacial thickness ϵ is used as ϵ16. We describe the considered
original schemes as the line and the considered schemes with the DP method as shapes where
α are chosen as 0, 1, and 2. The black, red, and blue ones are present for α = 0, 1, 2 in
Fig. 2. Figure 2(a) presents the discrete total mass Mn

h at each time using the considered
numerical schemes. From Fig. 2(a), we have that the all of the used scheme satisfying the mass
preserving property. Moreover, we present the snapshot at time 0, 150δt, and 300δt which
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FIGURE 1. (a) is temporal error, (b) is spatial error.

present the phase separation in 2D space. In addition, Fig. 2(b) shows the normalized total
discrete energy En

h /E1
h at each time. From Fig. 2(b), we can concerned that the considered

numerical scheme satisfying the unconditionally gradient stable.
In Fig. 3, we consider the following initial condition ϕ0(x, y):

ϕ0(x, y) = tanh

(
0.11−

√
(x− 0.38)2 + (y − 0.5)2√

2ϵ

)

+ tanh

(
0.11−

√
(x− 0.62)2 + (y − 0.5)2√

2ϵ

)
+ 1.

The initial condition is described in Fig. 3(a). Here, the number of grid Nx = Ny are chosen
as 200, the mesh size h = 1/Nx = 1/Ny, ϵ = ϵ16. In addition, the time step δt is used as
h2 and the total iteration time is used as 500. Figure 3(b)–(c) present the numerical result for
the viscous CH equation at time 500δt using the viscosity γ = 0.1, γ = 0.01, γ = 0.001, and
γ = 0, respectively. When we consider the small γ, the dynamics is more faster then the large
one in Fig. 3.
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FIGURE 2. (a) is total discrete mass, (b) is total discrete energy. Time step δt
and total iteration Nt are 30h2 and 300 each other. Dynamics are presented at
time 0δt, 150δt, and 300δt in mini snapshots of (a).

(a) (b) (c) (d) (e)

FIGURE 3. (a) is initial condition with two circle shape, (b) is γ = 0.1, (c) is
γ = 0.01, (d) is γ = 0.001, (e) is γ = 0.

5. CONCLUSION

From this work, we presented the relation of the semi implicit Euler’s and the linear stabi-
lized schemes using the DP method. Using the numerical simulation, we verified the order of
space and time in an one dimensional space. In addition, we presented the mass preserving
and the energy dissipation properties in a two dimensional space. Moreover, the relation of
the viscous CH equation and unconditionally gradient stable numerical schemes for the CH
equation is presented using the change of variable. The effect of the viscosity is also presented
by numerical experiment.
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