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ABSTRACT. In this paper, we derive the Γ-limit of functionals pertaining to some optimal
material distribution problems that involve a variable exponent, as the exponent goes to infinity.
In addition, we prove a relaxation result for supremal optimal design functionals with respect
to the weak-∗ L∞(Ω; [0, 1])×W 1,p0(Ω;Rm) weak topology.

1. INTRODUCTION

In this paper, we study the asymptotic behavior of a sequence of functionals related to op-
timal design problems and defined on Sobolev spaces with variable exponent in space, as the
exponent goes to infinity. It is a sequel of a previous work dealing with the constant exponent
case [1].

Variable exponent spaces are connected with variational integrals verifying non standard
growth and coercivity conditions [2]. Such functionals are used in the modeling of electrorhe-
ological fluids [3, 4, 5] and thermorheological fluids [6] and in image processing [7, 8]. The
energy functionals considered correspond to a two-phase mixture of different properties, such
as stiffness or electric resistivity, in different regions of the domain under consideration. The
optimal design models, describe the optimal distribution of such a mixture with respect to some
specific criterion. Minimizing such energies makes it possible to improve the mechanical or
electrical performance by optimizing the distribution of these properties.

In order to perform our analysis, we use Γ-convergence techniques (see section 2). These
techniques were already used in the study of optimal design models in the works [9, 10] in the
context of a dimension reduction process for thin films.

In this work, we consider a sequence of optimal design models described by functionals of
the form

J(χ, u) = ||χW1(∇u) + (1− χ)W2(∇u)|| pn(.)
,

Received June 27 2023; Revised November 2 2023; Published online December 25 2023.
2000 Mathematics Subject Classification. 74B20, 35E99, 35M10, 49J45.
Key words and phrases. Optimal design, Variable exponent, Γ-convergence, Relaxation, Variational methods.

296



Γ-CONVERGENCE FOR AN OPTIMAL DESIGN PROBLEM WITH VARIABLE EXPONENT 297

where χ(x) ∈ {0, 1} denotes the characteristic function of the first phase, ∇u the gradient of u
and Wi, i = 1, 2 models the energy density of the ith phase. The norm ||.|| pn(.)

is the Luxem-
bourg norm associated with the Lebesgue spaces with variable exponents L pn(.)(Ω;Rm) (see
Section 2.2), defined by

Lpn(.)(Ω;Rm) = {u : Ω −→ Rm, measurable, such that
∫
Ω
|u(x)|pn(x)dx < ∞}.

Then, we proceed with an asymptotic analysis when the exponent pn(.) of the energy density
goes to infinity in a sense specified below.

We obtain a limit energy of supremal kind that can model, for example, dielectric breakdown
for double phase composites (see [11, 12] and the references therein) or some simplified models
of polycrystal plasticity (see [13]). In the last two references, analogous asymptotic analyses
using Γ-convergence techniques for functionals involving a single phase elastic density can
be found. See also [14, 15], where the authors obtain limit models under some differential
constraints, involving supremal functions and A-quasiconvex envelopes. We also mention [16]
where the authors obtain an Lp approximation and a lower semicontinuity result for supremal
functionals.

In [17], the authors present an analogous analysis as in [14], generalizing to the variable
exponent case. We mention that in these works, the authors make use of the technique of
Young measures which we do not use in our analysis.

Let p0 > 1. Suppose that Ω is a regular domain in RN with |Ω| < +∞. Let (pn) = ( pn(x))
be a sequence of Lipschitz, positive, continuous functions defined on Ω and satisfying

p−
n → +∞ and lim

n→+∞

p+
n

p−
n

= 1,

where p−
n = inf pn and p+

n = suppn < ∞. Notice that the last hypothesis imply that

p+
n ≤ βp−

n ,

for some β > 1.
Consider the sequence of functionals In defined on L∞(Ω; [0, 1])× Lp0(Ω;Rm) by

In(χ, u) =

∥χW1(∇u) + (1− χ)W2(∇u)∥pn(.)
if

{
χ ∈ L∞(Ω; {0, 1}),
u ∈ W 1,pn(.)(Ω;Rm),

+∞ otherwise,

where Wi are continuous functions verifying that there exist αi > 0 and γi > 0 i = 1, 2, such
that

Wi(A) ≥ αi|A|γi .
The functional In represents, for example, the elastic energy of a solid occupying the domain
Ω and undergoing the deformation u, while χ represents the characteristic function of the first
phase of stiffness.
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Let V : [0, 1]×Mm×N −→ R defined by

V (κ,A) = κW1(A) + (1− κ)W2(A). (1.1)

Let I defined on L∞(Ω; [0, 1])× Lp0(Ω;Rm) by

I(χ, u) =

{
||V ⋆(χ,∇u)||∞ if u ∈ W 1,∞(Ω;Rm),

+∞ otherwise,

where

V ⋆(κ,A) := lim
p→+∞

inf
θ,φ

{(∫
Q

(
V (θ(x), A+∇φ(x))

)p
dx

) 1
p
,

φ ∈ W 1,p
# (Q;Rm), θ ∈ L∞(Ω; {0, 1}),

∫
Ω
θ(x)dx = κ

}
.

Our main result is the following Theorem.

Theorem 1.1. The sequence of functionals In Γ-converges with respect to the L∞(Ω; [0, 1])
weak-∗ ×W 1,p0(Ω;Rm) weak topology to I as n goes to ∞.

In the next section we present some brief preliminaries on the notions of Γ-convergence,
Lebesgue-Sobolev spaces with variable exponent and cross quasiconvexity. The following
section contains a relaxation result, Proposition 3.1, which is a consequence of the Γ-limit
result obtained in [1]. Its proof is based on Theorem 6.1 where we recover the same result as
in [1], by writing the limit functional in a different form, see the Appendix section. The proof
of Theorem 1.1 is given in section 4. Section 5 is then devoted to some auxiliary results.

2. PRELIMINARIES

2.1. Γ convergence. Let (Gn)n be a sequence of functionals defined on a topological space
X with values in R ∪ {+∞}. The Γ-lower limit and Γ-upper limit of (Gn)n are given by

Γ− lim inf Gn(x) := sup
U∈N (x)

lim inf
n→∞

inf
y∈U

Gn(y)

and
Γ− lim supGn(x) := sup

U∈N (x)
lim sup
n→∞

inf
y∈U

Gn(y),

where N (x) denotes the set of all neighborhoods of x in X . If there exist G : X → R∪{+∞}
such that Γ − lim inf Gn = Γ − lim supGn = G, then we say that (Gn)n Γ-converges to G
and we write G := Γ− limGn. When X is first countable we have the equivalent definition in
terms of sequences, that is, (Gn)n is said to Γ-converge to the limit functional G with respect
to the topology of X if and only if the following two conditions are satisfied for every x ∈ X:∀ xn → x, lim inf

n→∞
Gn(xn) ≥ G(x),

∃ xn → x, lim sup
n→∞

Gn(xn) ≤ G(x).
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The main properties of Γ-convergence are first that, up to a subsequence, the Γ-limit always
exists and second that if a sequence of almost minimizers stays in a compact subset of X , then
the limits of any converging subsequence minimize the Γ-limit. In particular we have that, if
G is the Γ-limit of Gn and for every n, xn is a minimizer of Gn with xn → x in X , then x is a
minimizer of G. Also, when the limit functional verifies some coercivity properties, the limit
minimization problem has always a solution due to the lower semicontinuity of the Γ-limit with
respect to the considered topology (see [18, 19]).

2.2. Lebesgue-Sobolev spaces with variable exponent. We recall the following properties
of Lebesgue and Sobolev spaces with variable exponent (see [20]). Let p : Ω −→ [1,∞] be a
measurable function with p+ := ess sup p(x) and p− := ess inf p(x). We define the Lebesgue
space with variable exponent Lp(.)(Ω;Rm) by

Lp(.)(Ω;Rm) = {u : Ω −→ Rm, measurable, such that
∫
Ω
|u(x)|p(x)dx < ∞}.

Endowed with the Luxembourg norm introduced by I. Sharapudinov in [21]

||u||p(.) = inf{λ > 0;

∫
Ω
|u(x)

λ
|p(x)dx ≤ 1},

it is a Banach space and the ||.||p(.) norm is lower semicontinuous with respect to almost ev-
erywhere convergence.

If we suppose p+ < ∞, then it is also a separable space and C∞
0 (Ω;Rm) is dense in

Lp(.)(Ω;Rm).
If in addition we suppose that p− > 1, then it is a uniformly convex and reflexive space.
Similarly, we define the Sobolev space W 1,p(.)(Ω;Rm) by

W 1,p(.)(Ω;Rm) = {u ∈ Lp(.)(Ω;Rm) such that ∇u ∈ Lp(.)(Ω;Mm×N )},

where ∇u denotes the distributional gradient of u. It can be endowed with the norm

||u||1,p(.) = ||u||p(.) + ||∇u||p(.),

that makes it a Banach space, which is separable when p is bounded and uniformly convex,
thus reflexive, when 1 < p−. Similarly to the result stating that if |Ω| < ∞ we have

lim
p→∞

||u||p = ||u||∞,

we have also that, if |Ω| < ∞, u ∈ L∞(Ω;Rm) and pn is a sequence of Lipschitz continuous
functions verifying

p−
n → ∞ and there exist β > 0 such that p+

n < βp−
n ,

then,
lim
n→∞

||u||pn(.)
= ||u||∞.
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Let ρp(.) : L
p(.)((Ω;Rm)) → R be the modular of Lp(.)((Ω;Rm)) defined by

ρp(.)(u) =

∫
Ω
|u(x)|p(x)dx.

This modular is (sequentially) lower semicontinuous with respect to weak convergence in
Lp(.)(Ω;Rm) and almost everywhere convergence. It verifies the unit ball property with the
||.||p(.) norm, more precisely, for every u ∈ Lp(.)(Ω;Rm), we have

if ||u||p(.) ≤ 1 then ρp(.)(u) ≤ ||u||p(.)
and

if ||u||p(.) > 1 then ρp(.)(u) ≥ ||u||p(.).

Moreover, we have that for every u ∈ Lp(.)((Ω;Rm))

||u||p(.) ≤ max{(ρp(.)(u))
1

p− , (ρp(.)(u))
1

p+ }. (2.1)

Finally, when p is bounded and there exist β > 0 such that p+ ≤ βp−, we have (see Lemma
3.2 in [17]), that for every 1 ≤ q ≤ p− and u ∈ Lp(.)((Ω;Rm)),

||u||q ≤ max{|Ω|
1
q
− 1

p− , |Ω|β(
1
q
− 1

p+
)}[1 + q(β − 1)

p+
]
1
q ||u||p(.). (2.2)

We have also the following Lemma that will be useful for the computation of the upper bound
in Theorem 1.1.

Lemma 2.1. Suppose that p is bounded and let v ∈ L∞(Ω), then we have

||v||p(.) ≤ 2
1

p− max{||v||p+ , ||v||p− , ||v||
p+

p−

p+ , ||v||
p−

p+

p− }.

Proof. Using (2.1), we have that

||v||p(.) ≤ max{(ρp(.)(v))
1

p− , (ρp(.)(v))
1

p+ }. (2.3)

Let A = {x ∈ Ω, |v(x)| ≥ 1}. Then we have

ρp(.)(v) ≤
∫
A
|v(x)|p+

dx+

∫
Ω\A

|v(x)|p−
dx

≤
∫
Ω
|v(x)|p+

dx+

∫
Ω
|v(x)|p−

dx.

Thus, we have

(ρp(.)(v))
1

p+ ≤ 2
1

p+ max{(
∫
Ω
|v(x)|p+

dx)
1

p+ , (

∫
Ω
|v(x)|p−

dx)
1

p+ }

≤ 2
1

p+ max{||v||p+ , ||v||
p−

p+

p− } (2.4)



Γ-CONVERGENCE FOR AN OPTIMAL DESIGN PROBLEM WITH VARIABLE EXPONENT 301

and

(ρp(.)(v))
1

p− ≤ 2
1

p− max{(
∫
Ω
|v(x)|p+

dx)
1

p− , (

∫
Ω
|v(x)|p−

dx)
1

p− }

≤ 2
1

p− max{||v||p− , ||v||
p+

p−

p+ }. (2.5)

Using (2.4), (2.5), (2.3) and noticing that 2
1

p− ≥ 2
1

p+ , we obtain the result.
□

2.3. Cross quasiconvexity. The limit model obtained by Γ-convergence techniques, involves
an energy functional that is lower semicontinuous with respect to the considered topology.
Thus, we define the cross-quasiconvex envelope (see [9, 10, 22, 23]), which is a special case of
the notion of A-quasiconvex envelope defined in [24], for V : [0, 1]×Mm×N → R, with

V (κ,A) = κW1(A) + (1− κ)W2(A),

by

V ⋆
p (κ,A) := inf

θ,φ

{(∫
Q

(
V (θ(x), A+∇φ(x))

)p
dx

) 1
p
, φ ∈ W 1,p

# (Q;Rm),

θ ∈ L∞(Ω; {0, 1}),
∫
Ω
θ(x)dx = κ

}
,

where
W 1,p

# (Q;Rm) = {φ ∈ W 1,p
loc (R

N ;Rm) : φ is Q periodic},

with Q being the unit cube in RN . We have the following result proved in [1], that will be
useful for the computation of the lower bound of the Γ-limit.

Lemma 2.2. Let 1 < p < p′ < ∞. Then, for every (κ,A) ∈ [0, 1]×Mm×N , we have

V ⋆
p (κ,A) ≤ V ⋆

p′(κ,A).

This Lemma enables us to define V ⋆ : [0, 1]×Mm×N → R by letting

V ⋆(κ,A) := lim
p→+∞

V ⋆
p (κ,A) = sup

p>1
V ⋆
p (κ,A).

The following Lemmas are a consequence of the dimension reduction studied in [9, 10]. Their
proofs follow the same steps as in [9, 10] with simpler arguments since we have no dimension
reduction process within it, we therefore omit them. See also [23].

Lemma 2.3. Let 1 < p < ∞. Suppose un ⇀ u in W 1,p(Ω;Rm) and χn
∗
⇀ χ in L∞(Ω; [0, 1]),

then
lim inf
n→∞

||V ⋆
p (χn,∇un)||p ≥ ||V ⋆

p (χ,∇u)||p.
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Lemma 2.4. Let 1 < p < ∞. For every u ∈ W 1,p(Ω;Rm) and χ ∈ L∞(Ω; [0, 1]), there exist
un ∈ W 1,p(Ω;Rm) and χn ∈ L∞(Ω; {0, 1}) such that un

∗
⇀ u in W 1,p(Ω;Rm) and χn

∗
⇀ χ

in L∞(Ω; [0, 1]), with

lim sup
n→∞

||V ⋆
p (χn,∇un)||p ≤ ||V ⋆

p (χ,∇u)||p.

3. RELAXATION RESULT

The following relaxation result is a consequence of the Γ-limit result obtained in [1].

Proposition 3.1. Let p0 > 1. For every χ ∈ L∞(Ω; [0, 1]) and u ∈ W 1,∞(Ω;Rm) let

J(χ, u) := ||V (χ,∇u)||∞ (3.1)

and
G(χ, u) = ||V ⋆(χ,∇u)||∞.

Then, G(χ, u) is the lower semi-continuous envelope of J(χ, u) with respect to the weak-∗
L∞(Ω; [0, 1])×W 1,p0(Ω;Rm) weak topology.

Proof. The proof is a consequence of the Γ-limit result obtained in [1]. Indeed, it was proved
in [1] that the Γ-limit with respect to the weak-∗ L∞(Ω; [0, 1])×W 1,p0(Ω;Rm) weak topology
of the sequence of functionals (Ip)p>p0 defined on L∞(Ω; [0, 1])× Lp0(Ω;Rm) into R by

Ip(χ, u) =

{
||V (χ,∇u)||p if χ ∈ L∞(Ω; {0, 1}), u ∈ W 1,∞(Ω;Rm),

+∞ otherwise.

is given by

Ī(χ, u) =

{
G(χ, u) if u ∈ W 1,∞(Ω;Rm),

+∞ otherwise.

Let J̄p0 be the lower semi-continuous envelope of J with respect to the weak-∗ L∞(Ω; [0, 1])×
W 1,p0(Ω;Rm) weak topology. Following the same steps as in [1] with minor changes (see
Appendix), we prove that the same Γ-limit is given by

Ī(χ, u) =

{
J̄p0(χ, u) if u ∈ W 1,∞(Ω;Rm),

+∞ otherwise,
(3.2)

which gives the result. □

4. PROOF OF THEOREM 1.1

As usual for the computation of the Γ-limit, we split the proof in two steps, the first dealing
with the lower bound and the second dealing with the upper bound.

Step 1. The lower bound. We suppose that min{γ1, γ2} < 1, the proof when γi > 1
is analogous with very minor changes. Let (χ, u) ∈ L∞(Ω; [0, 1]) × W 1,p0(Ω;Rm) and
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(χn, un) ∈ L∞(Ω; [0, 1])×W 1,p0(Ω;Rm) such that χn
∗
⇀ χ in L∞(Ω; [0, 1]) and un ⇀ u in

W 1,p0(Ω;Rm). We will prove that

lim inf In(χn, un) ≥ I(χ, u).

We can suppose that M = lim inf In(χn, un) < ∞. There exist n0 ∈ N such that for every
n > n0 we have In(χn, un) < M + 1, which means that for every n > n0, (χn, un) ∈
L∞(Ω; {0, 1})×W 1,pn(.)(Ω;Rm) and

In(χn, un) = ||V (χn,∇un)||pn(.)
.

Let p > 1. Since p−
n → +∞, there exist n1 ∈ N such that for every n > n1 we have p−

n > p.
Using (2.2), we have that for every n > max{n0, n1}

||V (χn,∇un)||p ≤ max{|Ω|
1
p
− 1

p−n , |Ω|
β( 1

p
− 1

p+n
)
}[1 + p(β − 1)

p+
n

]
1
p (M + 1) := δp,n.

Notice that, since χn(x) ∈ {0, 1}, for a.e. x ∈ Ω, we have

|χnW1(∇un) + (1− χn)W2(∇un)|p = χnW
p
1 (∇un) + (1− χn)W

p
2 (∇un).

Thus, using the coercivity condition and letting α = min{α1, α2}, γ = min{γ1, γ2}, we
obtain that

δp,n ≥ (

∫
Ω
χnW

p
1 (∇un) + (1− χn)W

p
2 (∇un)dx)

1
p

≥ α(

∫
Ω
χn|∇un|γ1p + (1− χn)|∇un|γ2pdx)

1
p

≥ α(

∫
{|∇un|>1}

χn|∇un|γ1p + (1− χn)|∇un|γ2pdx)
1
p

≥ α(

∫
{|∇un|>1}

χn|∇un|γp + (1− χn)|∇un|γpdx)
1
p

= α(

∫
{|∇un|>1}

|∇un|γpdx)
1
p ,

which gives

(

∫
{|∇un|>1}

|∇un|γpdx)
1
γp ≤ (

δp,n
α

)
1
γ .

Next, we have∫
Ω
|∇un|γpdx =

∫
{|∇un|>1}

|∇un|γpdx+

∫
{|∇un|≤1}

|∇un|γpdx

≤ (
δp,n
α

)p + |Ω|

and thus

||∇un||γp ≤ (
δp,n
α

)
1
γ + |Ω|

1
γp .
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Since limn→+∞ δp,n = δp := max{|Ω|
1
p , |Ω|

β
p }(M + 1), we have the existence of n2 ∈ N

such that for every n > n2, δp,n < δp + 1. Thus, for every n > max{n0, n1, n2} we have

||∇un||γp ≤ (
δp + 1

α
)
1
γ + |Ω|

1
γp .

Next, using Poincaré’s Inequality we prove that (un) is also uniformly bounded in Lγp(Ω;Rm)
and thus it is uniformly bounded in W 1,γp(Ω;Rm). Up to a subsequence we have that (un)
converges weakly to u in W 1,γp(Ω;Rm). Next, we prove that u ∈ W 1,∞(Ω;Rm). We have,
for every x0 ∈ Ω and t > 0 such that the open ball Bt(x0) ⊂ Ω, that

1

|Bt(x0)|

∫
Bt(x0)

|∇u|dx ≤ |Bt(x0)|−
1
γp ||∇u||γp

≤ |Bt(x0)|−
1
γp lim inf

n→∞
||∇un||γp

≤ |Bt(x0)|−
1
γp

(
(
δp + 1

α
)
1
γ + |Ω|

1
γp

)
.

Letting p → ∞, we obtain that

1

|Bt(x0)|

∫
Bt(x0)

|∇u|dx ≤ (
M + 2

α
)
1
γ + 1.

Then, letting t → 0+, we obtain that for every Lebesgue point x0 ∈ Ω we have

|∇u(x0)| ≤ (
M + 2

α
)
1
γ + 1

and thus, since Ω is bounded, we obtain that for a.e. x0 ∈ Ω

|u(x0)| ≤ C(Ω)
(
(
M + 2

α
)
1
γ + 1

)
,

which gives that u ∈ W 1,∞(Ω;Rm). Finally, we have for every n > max{n0, n1}

In(χn, un) = ||V (χn,∇un)||pn(.)

≥ 1

ηp,n
||V (χn,∇un)||p

≥ |Ω|
γ−1
γp

ηp,n
||V (χn,∇un)||γp

≥ |Ω|
γ−1
γp

ηp,n
||V ⋆

γp(χn,∇un)||γp,
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with ηp,n :=
δp,n
M+1 . Since χn

∗
⇀ χ in L∞(Ω; [0, 1]) and un ⇀ u in W 1,γp(Ω;Rm), the cross

quasiconvexity of V ⋆
γp implies that

lim inf In(χn, un) ≥
|Ω|

γ−1
γp

ηp
lim inf ||V ⋆

γp(χn,∇un)||γp

≥ |Ω|
γ−1
γp

ηp
||V ⋆

γp(χ,∇u)||γp

with ηp =
δp

M+1 . Let q0 < γp. We have that

lim inf In(χn, un) ≥
|Ω|

γ−1
γp

ηp
|Ω|

q0−γp
q0γp ||V ⋆

γp(χ,∇u)||q0 =
|Ω|

q0−p
q0p

ηp
||V ⋆

γp(χ,∇u)||q0 .

Letting p → ∞ we obtain that

lim inf In(χn, un) ≥ |Ω|
−1
q0 ||V ⋆(χ,∇u)||q0 .

Finally, letting q0 → +∞ we obtain that

lim inf In(χn, un) ≥ ||V ⋆(χ,∇u)||∞,

which concludes the lower bound.
Step 2. The upper bound. Let (χ, u) ∈ L∞(Ω; [0, 1])×Lp0(Ω;Rm). If u /∈ W 1,∞(Ω;Rm)

then I(χ, u) = ∞ and there is nothing to prove. Thus, we suppose that u ∈ W 1,∞(Ω;Rm).
Using the upper bound of the Γ-limit result obtained in [1], we have the existence of (χn, un) ∈
L∞(Ω; {0, 1})×W 1,n(Ω;Rm) such that χn

∗
⇀ χ in L∞(Ω; [0, 1]), un ⇀ u in W 1,p0(Ω;Rm)

verifying
lim sup
n→∞

||V (χn,∇un)||n ≤ ||V ⋆(χ,∇u)||∞. (4.1)

We suppose that for some N ∈ N, we have p+n ≤ n for every n ≥ N , otherwise we chose a
subsequence n′ verifying p+n ≤ n′ that we still label n. Then, using Lemma 2.1, we have for
every n ≥ N ,

In(χn, un) = ||V (χn,∇un)||pn(.)

≤ 2
1

p−n max {||V (χn,∇un)||p+
n
, ||V (χn,∇un)||p−

n

, ||V (χn,∇un)||
p+n
p−n
p+
n
, ||V (χn,∇un)||

p−n
p+n
p−
n
}.

Using Hölder inequality, we obtain that

In(χn, un) ≤ 2
1

p−n max {|Ω|
n−p+n
np+n ||V (χn,∇un)||n, |Ω|

n−p−n
np−n ||V (χn,∇un)||n

, |Ω|
n−p+n
np+n

p+n
p−n ||V (χn,∇un)||

p+n
p−n
n , |Ω|

n−p−n
np−n

p−n
p+n ||V (χn,∇un)||

p−n
p+n
n }.
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Making n → ∞ and using (4.1), we obtain that

lim sup
n→∞

In(χn, un) ≤ ||V ⋆(χ,∇u)||∞

which gives the result

5. AN AUXILIARY RESULT

In Theorem 1.1, we obtained the integral representation of the Γ-limit of the sequence of
energy functionals defined with the variable exponent that is, for every χ ∈ L∞(Ω; [0, 1]), u ∈
W 1,∞(Ω;Rm),

I(χ, u) = inf
{χn},{un}

{lim inf ||V (χn,∇un)||pn(.)
, χn ∈ L∞(Ω; {0, 1}),

un ∈ W 1,pn(.)(Ω;Rm), χn
∗
⇀ χ in L∞(Ω; [0, 1]), un ⇀ u in W 1,p0(Ω;Rm)}.

As in [9], we can deduce the following result, using the same arguments.

Theorem 5.1. Consider the same hypothesis of Theorem1.1, supposing γ1 = γ2 = γ and the
additional growth condition : there exist C1, C2 > 0 such that

Wi(A) ≤ Ci(1 + |A|γ).

Let 0 < λ < 1,

Gλ(u) = inf
{χn},{un}

{lim inf ||V (χn,∇un)||pn(.), χn ∈ L∞(Ω; {0, 1}),

un ∈ W 1,pn(.)(Ω;Rm), un ⇀ u in W 1,p0(Ω;Rm),
1

|Ω|

∫
Ω
χn(x)dx = λ}

and

Iλ(u) = inf
χ
{I(χ, u); 1

|Ω|

∫
Ω
χ(x)dx = λ}.

Then
Gλ = Iλ.

Proof. Let u ∈ W 1,∞(Ω;Rm). First notice that

Gλ(u) ≥ Iλ(u).

Indeed, let χn ∈ L∞(Ω; {0, 1}) such that
1

|Ω|

∫
Ω
χn(x)dx = λ, then, for a subsequence we

have χn
∗
⇀ χ in L∞(Ω; [0, 1]) with χ ∈ L∞(Ω; [0, 1]) which gives the first inequality.

For the second inequality, let ε > 0, then there exist χ ∈ L∞(Ω; [0, 1]), with 1
|Ω|

∫
Ω χ(x)dx =

λ such that
ε+ Iλ(u) ≥ I(χ, u).
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Let χn ∈ L∞(Ω; {0, 1}), un ∈ W 1,pn(.)(Ω;Rm) such that χn
∗
⇀ χ in L∞(Ω; [0, 1]) and

un ⇀ u in W 1,p0(Ω;Rm) with

lim
n→+∞

||V (χn,∇un)||pn(.)
= I(χ, u) ≤ ε+ Iλ(u).

If
1

|Ω|

∫
Ω
χn(x)dx = λ then we obtain the result letting ε → 0. Otherwise, we need to

construct χ̃n ∈ L∞(Ω; {0, 1}) with
1

|Ω|

∫
Ω
χ̃n(x)dx = λ and

lim
n→+∞

||V (χ̃n,∇un)||pn(.)
≤ lim

n→+∞
||V (χn,∇un)||pn(.)

.

We suppose that χn = χEn , with En ⊂ Ω and 0 <
|En|
|Ω|

< λ. Let

Kn =
[ |Ω| − |En|
λ|Ω| − |En|

]
,

where [x] denotes the integer part of x. We have

0 <
[ (1− λ)|Ω|
λ|Ω| − |En|

]
≤ Kn ≤ |Ω| − |En|

λ|Ω| − |En|

and since χn
∗
⇀ χ in L∞(Ω; [0, 1]) with

1

|Ω|

∫
Ω
χ(x)dx = λ, then |En| → λ|Ω| and thus

Kn → ∞. Next, since
|Ω\En| > (1− λ)|Ω| > 0,

we can have the following disjoint decomposition

|Ω\En| = ∪Kn
i=1Êi ∪B,

with |Êi| = λ|Ω| − |En|. Then, the coercivity condition implies the existence of c > 0 such
that

Kn∑
i=1

∫
Êi

|∇un|γpn(x)dx ≤
∫
Ω\En

|∇un|γpn(x)dx < c.

Thus, there exist 1 ≤ i(n) ≤ Kn such that

Kn

∫
Êi(n)

|∇un|γpn(x)dx ≤ c,

which gives that

lim
n→+∞

∫
Êi(n)

|∇un|γpn(x)dx = 0.

Using the growth condition, we obtain that

lim
n→+∞

∫
Êi(n)

W1(∇un)
pn(x)dx = lim

n→+∞

∫
Êi(n)

W2(∇un)
pn(x)dx = 0. (5.1)
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Let χ̃n = χEn + χÊi(n)
. We have χ̃n ∈ L∞(Ω; {0, 1}) with

1

|Ω|

∫
Ω
χ̃n(x)dx = λ. Moreover,

||V (χ̃n,∇un)||pn(.)
= ||V (χn,∇un) + χÊi(n)

(W1(∇un)−W2(∇un))||pn(.)

and thus

||V (χ̃n,∇un)||pn(.)
≤ ||V (χn,∇un)||pn(.)

+ ||χÊi(n)
W1(∇un)||pn(.)

+ ||χÊi(n)
W2(∇un))||pn(.)

.

Using (5.1), we obtain that

lim
n→+∞

||V (χ̃n,∇un)||pn(.)
≤ lim

n→+∞
||V (χn,∇un)||pn(.)

,

which concludes the proof in the case
|En|
|Ω|

< λ. A similar construction can be made when

|En|
|Ω|

> λ setting Kn =
[ |Ω| − |En|
|En| − λ|Ω|

]
. □

6. APPENDIX

In this section we will prove an analogous result to Theorem 1.1 in [1] where the limit
functional contains J̄p0 instead of G, thus obtaining (3.2) in the proof of Theorem 5.1. The
proof of the next Theorem follows the same steps as in [1] with minor changes and thus we
will focus on these changes.

Theorem 6.1. Let 1 < p0 < ∞. Consider the sequence of functionals (Ip)p>p0 , where p
denotes a sequence pn → +∞, defined on L∞(Ω; [0, 1])× Lp0(Ω;Rm) by

Ip(χ, u) =


(∫

Ω
χW1(∇u)p + (1− χ)W2(∇u)pdx

) 1
p if

{
χ ∈ L∞(Ω; {0, 1}),
u ∈ W 1,p(Ω;Rm),

,

+∞ otherwise,

where Wi : Mm×N → R are continuous functions verifying linear growth and coercivity
hypotheses: there exist αi, βi > 0 such that

βi|A| ≤ Wi(A) ≤ αi(1 + |A|).

Let I be defined on L∞(Ω; [0, 1])× Lp0(Ω;Rm) by

I(χ, u) =

{
J̄p0(χ, u) if u ∈ W 1,∞(Ω;Rm),

+∞ otherwise,

where J is defined in (3.1) and J̄p0 is its lower semicontinuous envelope with respect to
the weak-∗ L∞(Ω; [0, 1]) × W 1,p0(Ω;Rm) weak topology. Then, the sequence of function-
als (Ip)p>p0 Γ-converges to I as p goes to +∞ with respect to the L∞(Ω; [0, 1]) weak-∗ ×
W 1,p0(Ω;Rm) weak topology.
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Proof. Step 1. The lower bound. Let (χ, u) ∈ L∞(Ω; [0, 1]) × Lp0(Ω;Rm) and (χp, up) ∈
L∞(Ω; [0, 1])×Lp0(Ω;Rm) such that χp

∗
⇀ χ in L∞(Ω; [0, 1]) and up ⇀ u in W 1,p0(Ω;Rm).

We will prove that
lim inf
p→∞

Ip(χp, up) ≥ I(χ, u).

We can suppose that M = lim inf
p→∞

Ip(χp, up) < ∞, which implies that χp ∈ L∞(Ω; {0, 1})

and up ∈ W 1,p(Ω;Rm). As in [1], we obtain that for some p1 ≥ p0 and for every r ≥ p1, (up)p
is uniformly bounded in W 1,r(Ω;Rm) and thus, up to a sub-sequence, it converges weakly in
W 1,r(Ω;Rm) to u ∈ W 1,∞(Ω;Rm). Then, still as in [1], we obtain that for every r ≥ p1

Ip(χp, up) ≥ |Ω|
r−p
pr ||V (χp,∇up)||r,

where V is defined in (1.1). Making r → ∞, we obtain that

Ip(χp, up) ≥ |Ω|
1
p ||V (χp,∇up)||∞,

and thus, using the lower semicontinuity of J̄p0 , we obtain that

lim inf
p→∞

Ip(χp, up) ≥ lim inf
p→∞

||V (χp,∇up)||∞

= lim inf
p→∞

J(χp, up)

≥ lim inf
p→∞

J̄p0(χp, up)

≥ J̄p0(χ, u).

This last inequality insures that we have

Γ− lim inf Ip(χ, u) ≥ I(χ, u),

for every (χ, u) ∈ L∞(Ω; [0, 1])× Lp0(Ω;Rm).
Step 2. The upper bound. We need to prove the converse inequality stating that

Γ− lim sup Ip(χ, u) ≤ I(χ, u)

for every (χ, u) ∈ L∞(Ω; [0, 1])× Lp0(Ω;Rm). If u /∈ W 1,∞(Ω;Rm) then there is nothing to
prove. Then, let (χ, u) ∈ L∞(Ω; [0, 1])×W 1,∞(Ω;Rm). In [1], we obtained that

Γ− lim sup Ip(χ, u) = ||V ⋆(χ,∇u)||∞.

Thus, we have
Γ− lim sup Ip(χ, u) ≤ ||V (χ,∇u)||∞ = J(χ, u).

Finally, taking the lower semicontinuous envelop with respect to the L∞(Ω; [0, 1]) weak-∗ ×
W 1,p0(Ω;Rm) weak topology on both sides of the last inequality, we obtain that

Γ− lim sup Ip(χ, u) ≤ J̄p0(χ, u)

and thus the result. □
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