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ABSTRACT. This paper introduces the industrial problem, the solution, and the results of the
research conducted with Define Inc. The client company wanted to improve the performance
of an object detection model on the floor plan dataset. To solve the problem, we analyzed the
operational principles, advantages, and disadvantages of the existing object detection model,
identified the characteristics of the floor plan dataset, and proposed to use of YOLO v5 as an
appropriate object detection model for training the dataset. We compared the performance of
the existing model and the proposed model using mAP@60, and verified the object detection
results with real test data, and found that the performance increase of mAP@60 was 0.08 higher
with a 25% shorter inference time. We also found that the training time of the proposed YOLO
v5 was 71% shorter than the existing model because it has a simpler structure. In this paper,
we have shown that the object detection model for the floor plan dataset can achieve better
performance while reducing the training time. We expect that it will be useful for solving other
industrial problems related to object detection in the future. We also believe that this result can
be extended to study object recognition in 3D floor plan dataset.

1. INTRODUCTION

Image classification is the discipline of recognizing and classifying objects in images. Since
the unveiling of AlexNet at the ILSVRC (ImageNet Large Scale Visual Recognition Chal-
lenge) competition in 2012, which showed a significant improvement in performance over the
previous SOTA (State-of-the-art) model, the field of image classification has made significant
progress. The main terms used in this field are:

• Classification: classifying an object in an image as to what it is.
• Localization: For a single object in an image, the location of the object is recognized

through a rectangular box, which is called a bounding box.
• Object detection: When multiple objects exist in an image, classification and localiza-

tion are performed for each object.
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• Segmentation: Recognizing and classifying objects at the pixel level, meaning that not
detecting objects with the bounding box having the empty space in object detection but
finding and classifying only the area where the object is present.

This paper describes the problem-solving conducted with Define Inc., a client company, and
deals with how to upgrade the performance of the object detection model with the floor plan
dataset.

Define Inc. is a company in the application software development and supply industry. Its
business includes system application software development and supply, software consultancy
and development supply, computer equipment consultancy and development supply, and re-
search and development (natural science research).

The client company has been researching using deep learning techniques to create an object
detection model that recognizes and detects objects in the floor plan dataset. The model used by
the client company is the Faster R-CNN. It has a mAP@60 of 0.89, which is not bad. However,
the problem is that it takes a long time to train due to the large size of the images, the large
amount of data and the complexity of the model. In addition, there is a lack of confidence
that the current method is optimal, due to a lack of understanding of deep learning models. To
address these issues, the client company commissioned the verification of the existing model
and performance improvement through mathematical data analysis.

2. RELATED RESEARCH

Research in object detection has a long history. In 2001, the Viola-Jones detector [15, 16] by
P. Viola and M. Jones was the first to achieve real-time detection of human faces without any
constraints. In 2008, the Deformable Part-based Model (DPM) [4] proposed by P. Felzenszwalb
won the VOC-07, -08 and -09 detection competitions and is an example of traditional object
detection.

Since the emergence of AlexNet [6] in 2012, research on object detection using deep learn-
ing has been active, along with the rapid development of deep learning [5]. Figure 1 is the
graph showing the increase in the number of published papers in the field of object detection
[5].

The operation process of the object detection model using deep learning is mainly divided
into region proposal and classification. Region proposal refers to the process of proposing the
location of objects in the form of bounding box, and classification refers to the process of iden-
tifying the object detected as the proposed bounding box. A model that performs these two
processes sequentially is called a two-stage detector, and a model that performs them simulta-
neously is called a one-stage detector.

Because the two-stage detector performs the above two operations sequentially, it has good
accuracy but the disadvantage of slow speed. A model developed to improve this is the one-
stage detector, which has the advantage of high speed and can be used mainly for real-time
detection. However, compared to the two-stage detector model, it has the disadvantage of poor
performance in detecting dense objects and small objects. Table 1 shows typical examples of
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FIGURE 1. Number of publications in object detection [5].

Two-stage detector One-stage detector
R-CNN [7] YOLO [12]
SPPNet [8] Single Shot MultiBox Detector (SSD) [13]
Fast R-CNN [9] RetinaNet [14]
Faster R-CNN [10] CornetNet [15]
Feature Pyramid Networks [11] CenterNet [16]

DETR [17]

TABLE 1. Examples of two-stage and one-stage detectors [5].

FIGURE 2. Object detection milestones [5].

a two-stage detector and a one-stage detector. Figure 2 is the graph showing the genealogy of
the papers that are considered milestones in the field of object detection [5].
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FIGURE 3. An example of the floor plan image and annotation file.

FIGURE 4. Sample images of the objects.

3. PROPOSED METHOD

In this chapter, we introduce the data provided by the client company and the data pre-
processing process to solve the problem. It explains the operational principle, advantages and
disadvantages of the Faster R-CNN model used by the client company for object detection, and
introduces YOLO v5, a deep learning model proposed by us.

3.1. Data description. Common types of drawings include layout, perspective, plan, eleva-
tion, section, bird’s eye view, etc. Of these, the drawing we will use is a floor plan. To build
a model that detects objects in the floor plan dataset, we select and train a model with the
floor plan images and annotation files containing object information. The object information
includes the object name, the category id of the object, and the location of the object (x, y
coordinates of the top left corner and the horizontal and vertical lengths of the bounding box).
Figure 3 is an example of an actual floor plan image and part of an annotation file.

The objects we want to detect in the floor plan are a toilet, a washbasin, a sink, a bathtub,
and a gas stove. Figure 4 shows sample images of the objects.

Figure 5 represents the visualization of information about objects in a floor plan.
Given a floor plan and an annotation file, you can draw information about objects on the floor

plan, but you also want to create a model that can locate, recognize, and classify the object on
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FIGURE 5. Visualization of objects in the floor plan.

its own, even if you only have the floor plan. This is object detection. Here’s more about the
data:

• File extensions: floor plan images are given as PNG files and annotation files as JSON
files.

• File name: house type FP OBJ file index. The housing types are APT (apartment),
DEH (detached house), and ROW (row house). FP means ‘floor plan’ and OBJ means
‘object detection’.

ex) APT FP OBJ 000212509.png, DEH FP OBJ 989138376.json, ROW FP OBJ
970361746.png

• Number of data: 10,127 pairs of floor plans and annotation files.
• Image size: the sizes of 10,047 images are between 4,961 and 4,964 in width and 3,508

and 3,510 in height. The remaining images are of varying sizes and small numbers, so
we excluded them from the dataset.

• From the 10,047 data, we excluded the data with missing bounding box name and
location information, and finally used 10,041 data. From the final data, we randomly
extracted 6,025 training data, 2,008 validation data, and 2,008 test data.

• The total number of each item is as follows: 41,122 toilets, 41,029 washbasins, 20,864
sinks, 19,660 bathtubs and 20,504 gas stoves.

3.2. Data pre-processing. The sizes of 10,041 images we’ll use range from 4,961 to 4,964 in
width and 3,508 to 3,510 in height, but we need them to be the same size to train the model. So
we resize all the images to (4961, 3508) using the resize function in the OpenCV library.

We also reduced the image size to 0.3x to solve the problem that the large image size makes
the training too long. The value of 0.3x is an experimental value obtained through various
tests, taking into account the trade-off between learning speed and accuracy, as the smaller the
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Reduction ratio Original 70% 50% 30% 20%
Training time 5625.5012 3489.8909 2471.8303 1910.0603 1867.5478
(seconds/epoch)
mAP@60 0.9097 0.9014 0.8972 0.8904 0.7223

TABLE 2. Change in training time and mAP@60 of Faster R-CNN as a func-
tion of image reduction ratio.

FIGURE 6. YOLO detection system [12].

image size, the faster the training speed, but the lower the accuracy. Table 2 shows that the
mAP@60 for Faster R-CNN decreases slowly at the reduction ratio of from 100% to 30%, but
does rapidly at the ratio of 20%.

3.3. Faster R-CNN. Let’s introduce Faster R-CNN, the model that the client used before.
The previous model, Fast R-CNN, uses a selective search algorithm for region proposal,

which is the biggest cause of slowdown because it operates on the CPU and causes a bottleneck
in the neural network. To solve this problem, Fast R-CNN adopts Region Proposal Network
(RPN) at the region proposal stage. It is called Faster R-CNN.

Faster R-CNN = Fast R-CNN + RPN.

Although the Faster R-CNN model is an improved version over the previous model, im-
proving speed and accuracy, it has the disadvantage of having a complex model structure. So,
it takes a lot of time to train and infer.

To address these shortcomings, we searched for a one-stage detector with a simpler structure
to improve speed, and came up with YOLO v5, a model that is fast, accurate, and easy to use.

3.4. YOLO v5. YOLO, which stands for ”You Only Look Once”, is a model that restructures
object detection as a regression problem so that the image can be viewed once and computed
once to process the location, classification, and class probability of the bounding box represent-
ing the object. Figure 6 briefly shows the inference principle of YOLO v1 [12]: (1) resize the
image to a fixed size, (2) run the convolutional network once, and (3) select only the detection
results that exceed the confidence-based threshold.

YOLO v1 uses a neural network with 24 convolutional layers and 2 fully connected layers
to compute the entire image only once, resulting in very fast inference speeds. This makes it a
popular model for real-time object detection. Table 3 shows a performance comparison of the
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Real-time detectors Train mAP FPS
100Hz DPM 2007 16.0 100
30Hz DPM 2007 26.1 30
Fast YOLO 2007+2012 52.7 155
YOLO 2007+2012 63.4 45
Less than real-time
Fastest DPM 2007 30.4 15
R-CNN Minus R 2007 53.5 6
Fast R-CNN 2007+2012 70.0 0.5
Faster R-CNN VGG-16 2007+2012 73.2 7
Faster R-CNN ZF 2007+2012 62.1 18
YOLO VGG-16 2007+2012 66.4 21

TABLE 3. Comparison of Real-time Systems [12].

FIGURE 7. Modules of YOLO v5 [19].

models when YOLO model was released [12]. You can see that YOLO has a high mAP and
fast FPS.

Our proposed YOLO v5 is the fifth model in the YOLO series. Figure 7 shows the modules
of YOLO v5 model structure. Figure 8 shows the model structure utilizing the modules in
Figure 7 [19].

3.5. Description of mAP. The metric we used to compare the performance of the existing
and alternative models is mean Average Precision (mAP). This is the metric mainly used to
determine the performance of object detection models. To understand it, we need to know the
concepts of Precision, Recall, and Intersection of Union (IoU).

Precision is the percentage of true bounding boxes in positive ones made by the object
detection model. Recall is the proportion of positive predictions made by the model in true
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FIGURE 8. Model structure of YOLO v5 [19].

bounding boxes. The formulas for calculating these are as follows:

Precision =
TP

TP + FP
and Recall =

TP
TP + FN

where TP, TN, and FP means [18]:
• True positive (TP): A correct detection of a ground-truth bounding box;
• False positive (FP): An incorrect detection of a nonexistent object or a misplaced de-

tection of an existing object;
• False negative (FN): An undetected ground-truth bounding box.

IoU is a value that indicates how much the predicted bounding box overlaps with the actual
bounding box and is obtained by the following formula:

IoU =
area of overlap
area over union

.

To determine whether a predicted bounding box is true or false, we first determine an IoU
threshold. If the IoU value exceeds the threshold, the bounding box is determined to be true,
otherwise it is determined to be false. Therefore, the TP, FP and FN values will change depend-
ing on the IoU threshold. In this paper we use 0.6 as the IoU threshold.

After determining whether a bounding box is true or false, the bounding boxes are sorted
in descending order of confidence as shown at table in Figure 9. The graph showing precision
versus recall based on the table is called the PR curve (blue solid line). If you interpolate the
PR curve (red dotted line) and calculate the area between the graph and the x-axis, it becomes
Average Precision (AP). The AP value is calculated for each class and the average of AP values
of all classes is defined as mean Average Precision (mAP).

4. RESULTS AND CONCLUSION

4.1. Results. Here are the specifications of the computer we used to train the data into the
model:

• Intel(R) Xeon(R) CPU E5-2620 v4 @ 2.10GHz



SHORT TITLE: FLOOR PLAN DATASET WITH YOLO V5 319

FIGURE 9. Table for mAP calculation and PR-curve from the table [18].

conf thre batch-size lr momentum
Faster R-CNN 0.048 2 0.005 0.9
YOLO v5 0.001 4 0.01 0.937

TABLE 4. Parameters used.

Training time Training time Inference time FPS mAP@60
(seconds/epoch) (seconds/image) (seconds/image)

Faster R-CNN 1910.06 0.32 5.66e-2 17.68 0.89
YOLO v5 546.61 0.09 1.20e-2 83.33 0.98

TABLE 5. Comparison of the performance of Faster R-CNN and YOLO v5.

• NVIDIA TITAN V

For each model, the following parameters commonly used:

• Common: IoU threshold=0.6, optimizer=SGD, weight decay=0.0005.

Table 4 shows the parameters applied differently for each model.
Table 5 compares the training time (seconds/epoch), inference time (seconds), FPS, and

mAP@60 for the Faster R-CNN and YOLO v5 models. YOLO v5 had 71% less training time,
25% less inference time, 20x faster FPS, and 0.08 higher mAP@60 than Faster R-CNN.

Table 6 compares APs of each class for Faster R-CNN and YOLO v5 models.
Figure 10 shows the original floor plan images and those predictions made by Faster R-CNN

and YOLO v5, respectively. The first row represents that YOLO v5 predicted exactly the same
as the original data, while Faster R-CNN incorrectly predicted that there were objects in the
space without objects.
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Toilet washbasin Sink Bathtub gas stove
Faster R-CNN 0.91 0.84 0.90 0.93 0.89
YOLO v5 0.98 0.98 0.97 0.99 0.99

TABLE 6. APs for each class.

This doesn’t mean that Faster R-CNN always under-predicts. As Faster R-CNN also has a
high mAP@60, there are cases where both models predict perfectly, as shown in the second
row of Figure 10.

(A) Original 1 (B) Faster R-CNN 1 (C) YOLO v5 1

(D) Original 2 (E) Faster R-CNN 2 (F) YOLO v5 2

FIGURE 10. Comparison of Faster R-CNN and YOLO v5 for test data.

Figure 11 shows the variation of train loss and val loss when Faster R-CNN and YOLO v5
are trained up to 100 epoch. Faster R-CNN had the lowest train loss at 92 epoch and YOLO
v5 had the lowest train loss at 100 epoch. The val loss of Faster R-CNN reached nearly the
bottom at epoch 17 faster than that of YOLO v5. The difference of val loss of Faster R-CNN at
epochs 17 and 92 is not significant. The val loss of YOLO v5 slowly decreased until it reached
around 100 epoch. The reason two graphs have different scales in Figure 11 is that two models
have different loss functions for each step of classification, objectness, and location. Table 7
shows loss functions for each step.

Figure 12 shows the change of mAP@60 according to the variation of confidence threshold
for Faster R-CNN and YOLO v5. As you can see, both graphs decrease from the beginning.
This leads us to choose the lowest conf thre to obtain the highest mAP@60 values for each
model.
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(A) Faster R-CNN (B) YOLO v5

FIGURE 11. Comparison of train loss and val loss of Faster R-CNN and
YOLO v5.

Classification Objectness Location
Faster R-CNN cross entropy binary cross entropy smooth L1 loss
YOLO v5 binary cross entropy binary cross entropy Complete-IoU

with logits with logits

TABLE 7. Loss functions for Faster R-CNN and YOLO v5 [10, 19].

(A) Faster R-CNN (B) YOLO v5

FIGURE 12. Comparison of mAP@60 of Faster R-CNN and YOLO v5.

4.2. Conclusion. Through data analysis, data pre-processing and feature analysis of various
object detection models, we obtained the results of the problem-solving to improve the perfor-
mance of object detection models for the floor plan dataset. To solve this problem, we examined
the characteristics of the floor plan dataset, the operational principle and characteristics of the
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model used by the client company, and identified the related prior research. Faster R-CNN, a
model previously used by the client company, had a good level of accuracy but had the dis-
advantage of taking so long time to train due to the complexity of the model. Therefore, we
proposed to use YOLO having a simple structure, which is a representative model of the one-
stage detector method, and YOLO v5, which is a stabilised and easy-to-use version. In addition,
we found that the large size of the floor plan images made the training time too long. To reduce
the training time, we reduced the size of images through data pre-processing. Also, we utilized
various parameters to get the high performance of the model.

From this problem-solving, the client company improved the performance of the object de-
tection model on the floor plan dataset. In addition, we were able to understand the operational
principle and performance of various object detection models and experienced in applying ob-
ject detection models to real-world floor plan datasets. As the field of object detection is rapidly
developing and related research is constantly being published, we expect to be able to further
improve the performance of object detection models by applying new research results to the
floor plan dataset in the future. In addition, we plan to further investigate the segmentation of
objects in the floor plan dataset by studying models related to instance segmentation, such as
UNet and DeepLabV3+ models.

The client plans to utilize the results of this industry problem-solving to

• Reducing inference errors in 2D-based architectural floor plan inference web services.
• Developing a model for optical character recognition in architectural floor plan datasets.
• Recognizing various architectural information, including objects, from 2D drawings

and utilize them to generate 3D drawings.
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