A finite element method for the incompressible Navier-Stokes equations on non-convex polygons

Hyung Jun Choi

1) Department of Mathematics, Pohang University of Science and Technology, Pohang 790-784, Kyoungbuk, Republic of Korea

Corresponding Author: Jae Ryong Kweon, kweon@postech.ac.kr

ABSTRACT

In this talk, we study a finite element method for the incompressible Navier-Stokes equations on non-convex polygonal domains. In a neighborhood of the non-convex corner the velocity and pressure functions have a decomposition into the singular part plus the regular part in the space $H^2 \times H^1$. We propose a numerical scheme for the regular part and the stress intensity factors, show the stability and derive the error estimates. Some numerical experiments are given.

INTRODUCTION

We consider the incompressible Navier-Stokes system

$$
\begin{align*}
-\mu \Delta u + (u \cdot \nabla)u + \nabla p &= f \quad \text{in } \Omega, \\
\text{div } u &= g \quad \text{in } \Omega, \\
u &= 0 \quad \text{on } \Gamma,
\end{align*}
$$

(1)

where Ω is a non-convex polygonal domain in \mathbb{R}^2 with the boundary $\Gamma := \partial \Omega$; u is the velocity vector; p is the pressure; f, g are given functions.

We here describe the formulas of the singularity functions for the Stokes operator L defined by $L[v, q] := [-\mu \Delta v + \nabla q, -\text{div } v]$. The singular exponents of the Stokes operator with no-slip condition are ordered as follows:

$$
1/2 < \lambda_1 < \pi/\omega < \Re \lambda_2 < \Re \lambda_3 < 2\pi/\omega < \cdots,
$$

where λ_i are the roots of the algebraic equation: $\sin^2(\lambda_i \omega) - \lambda_i^2 \sin^2 \omega = 0$. Let $\chi = \chi(r) \in C^\infty(\mathbb{R}^2)$ be the cutoff function satisfying $\chi \equiv 1$ if $r \leq r_0$, and $\chi \equiv 0$ if $r \geq 3r_0$ for a number $r_0 > 0$. The corner singularity functions are defined by

$$
\Phi_i = \chi r^{-\lambda_i} T_i(\theta), \quad \phi_i = \chi r^{-\lambda_i-1} \xi_i(\theta),
$$

(2)

where $T_i(\theta)$ and $\xi_i(\theta)$ are the trigonometric functions corresponding the singular exponent λ_i, satisfying $T_i(\omega_1) = T_i(\omega_2) = 0$ with the rays $\theta = \omega_1, \omega_2$ away from the non-convex vertex. Using the eigenvalue $-\lambda_i$ instead of λ_i in the singularity functions Φ_i and ϕ_i, the dual singular functions are defined by

$$
\Phi_i^- = \chi r^{-\lambda_i} T_i^-(\theta), \quad \phi_i^- = \chi r^{-\lambda_i-1} \xi_i^-(\theta),
$$

(3)
where \(T_\theta^- (\theta) \) and \(\xi_\theta^- (\theta) \) are the trigonometric functions corresponding to the eigenvalue \(-\lambda_\theta\).

As above, the explicit form of the corner singularity function in a neighborhood of the corner is found. So, using the corner singularity function, the approximate solution pair \([u_h, p_h]\) is characterized by \(w_h, \sigma_h \) and \(C_{i,h} \), which has the following decomposition:

\[
\begin{align*}
\mathbf{u}_h &= \mathbf{w}_h + \sum_{i=1}^{2} C_{i,h} \Phi_i, \\
p_h &= \sigma_h + \sum_{i=1}^{2} C_{i,h} \phi_i.
\end{align*}
\]

Our aim is how to find the approximate coefficient \(C_{i,h} \) for \(i = 1, 2 \) and construct the approximate pair \([w_h, \sigma_h]\). We explain the method to find these functions and value as follows. Let \(V_h \) and \(M_h \) be finite dimensional subspaces of \(H^1_0(\Omega) \) and \(L^2(\Omega) \), which satisfy the inf-sup condition. Using the iterative scheme and the finite element method, we compute the approximate solution of the Navier-Stokes equations (1) with the corner singularity functions. Our algorithm of computing the finite element solution \([w_h^n, \sigma_h^n]\) and the approximate coefficients \(C_{i,h} \) for \(i = 1, 2 \) is as follows:

1. For \(i = 1, 2 \), find \([\Psi_{i,h}, \psi_{i,h}]\) \(\in V_h \times M_h \) such that

\[
\begin{align*}
a(\Psi_{i,h}, \mathbf{v}_h) - b(\psi_{i,h}, \mathbf{v}_h) &= -\langle \Gamma_{i,s}, \mathbf{v}_h \rangle \quad \forall \mathbf{v}_h \in V_h, \\
b(q_h, \Psi_{i,h}) &= \langle \gamma_{i,s}, q_h \rangle \quad \forall q_h \in M_h,
\end{align*}
\]

where \([\Gamma_{i,s}, \gamma_{i,s}] := L[\Phi_i^-, \phi_i^-] \).

2. Set \(n = 1 ; \ w_h^0 = 0 \) and \(C_{1,h}^0 = C_{2,h}^0 = 0 \).

3. Set \(u_h^{n-1} = w_h^{n-1} + C_{1,h}^{n-1} \Phi_1 + C_{2,h}^{n-1} \Phi_2 \).

4. Calculate

\[
\begin{align*}
C_{1,h}^n &= \gamma_1 \int_\Omega [- (u_h^{n-1} \cdot \nabla) u_h^{n-1} + f] \cdot (\Phi_1^- + \Psi_{1,h}) - g(\phi_1^- + \psi_{1,h}) \ dx, \\
C_{2,h}^n &= \gamma_2 \int_\Omega [- (u_h^{n-1} \cdot \nabla) u_h^{n-1} - C_{1,h}^n \Phi_1^+ + f] \cdot (\Phi_2^- + \Psi_{2,h}) \\
&\quad - (C_{1,h}^n g_{1,s} + g)(\phi_2^- + \psi_2^-) \ dx.
\end{align*}
\]

5. Find \([w_h^n, \sigma_h^n]\) \(\in V_h \times M_h \) such that

\[
\begin{align*}
a(w_h^n, \mathbf{v}_h) - b(\sigma_h^n, \mathbf{v}_h) &= \langle \Gamma_{2,h}^{n-1}, \mathbf{v}_h \rangle \quad \forall \mathbf{v}_h \in V_h, \\
b(q_h, w_h^n) &= \langle g_{2,h}^{n-1}, q_h \rangle \quad \forall q_h \in M_h,
\end{align*}
\]

where

\[
\begin{align*}
\Gamma_{2,h}^{n-1} &= - (u_h^{n-1} \cdot \nabla) u_h^{n-1} - C_{1,h}^n \Phi_1^s - C_{2,h}^n \Phi_2 + f, \\
g_{2,h}^{n-1} &= C_{1,h}^n g_{1,s} + C_{2,h}^n g_{2,s} + g.
\end{align*}
\]

6. Set \(n \leftarrow n + 1 \), and \(u_h^n = w_h^n + C_{1,h}^n \Phi_1 + C_{2,h}^n \Phi_2 \).

7. Repeat 3-6 until \(||u_h^n - u_h^{n-1}||_0 < \text{TOL} \).

NUMERICAL EXPERIMENTS

Let \(\Omega \) be the L-shaped domain, which has the following form

\[
\Omega = ((-1, 1) \times (-1, 1)) \backslash ([1, 0] \times [1, 0]).
\]
The opening angle of the concave vertex is \(\omega = 3\pi/2 \). Let \((r, \theta)\) be the polar coordinate. The cutoff function \(\chi \in C_0^2(\mathbb{R}^2) \) is defined by \(\chi(r) = 1 \) for \(r \leq 1/4 \), \(\chi(r) = \zeta(r) \) for \(1/4 \leq r \leq 3/4 \), and \(\chi(r) = 0 \) for \(3/4 \leq r \), where \(\zeta(r) := -192r^5 + 480r^4 - 440r^3 + 180r^2 - 33.75r + 3.375 \). The singular exponents \(\lambda_i \) for \(i = 1, 2 \) are the roots of \(\sin^2(\lambda_i \omega) - \lambda_i^2 \sin^2 \omega = 0 \) such that \(1/2 < \lambda_1 < \lambda_2 < 1 \). For the case \(\omega = 3\pi/2 \), these roots are approximated by \(\lambda_1 \approx 0.5445 \) and \(\lambda_2 \approx 0.9085 \). Using the cutoff function \(\chi \), the corner singularity functions \(\Phi_i \) and \(\phi_i \) for \(i = 1, 2 \) are defined by (2).

Set \(\mu = 1 \) in (1) for simplicity. We choose the exact solutions \(u, p \) of (1) of the following form:

\[
 u = w + C_1 \Phi_1 + C_2 \Phi_2, \quad p = \sigma + C_1 \phi_1 + C_2 \phi_2
\]

where \(w = (w_1, w_2) \), \(\sigma = xy(x - y) \) and \(C_1 = C_2 = 1 \) with \(w_1 = w_2 = (x - x^3)(y - y^3) \). The right hand side \(f = -\Delta u + (u \cdot \nabla)u + \nabla p \) and \(g = \text{div } u \) directly calculated by (4) are given. Using the given functions \(f \) and \(g \), the approximate coefficient \(C_{i,h}^N \) and the discrete solution \([w_h^N, \sigma_h^N] \) are computed, where \(N \) is the number of iterations with \(\text{TOL} = 10^{-7} \). Let \(u_h^N \) and \(p_h^N \) be the approximate functions defined by \(u_h^N := w_h^N + \sum_{i=1}^2 C_{i,h}^N \Phi_i \) and \(p_h^N := \sigma_h^N + \sum_{i=1}^2 C_{i,h}^N \phi_i \).

To confirm the efficiency of our algorithm, we also find the finite element approximate pair \([\tilde{u}_h^N, \tilde{p}_h^N]\) obtained by the usual finite element method in the same finite dimensional subspace. In Figure 1-3, we compare the approximate pairs computed by two different methods.

![Figure 1](image1.png)

(a) \(|u_1^N - u_{1,h}^N|\)

(b) \(|u_1^N - \tilde{u}_{1,h}^N|\)

Figure 1. Graphs of the errors for \(u_{1,h}^N \) and \(\tilde{u}_{1,h}^N \).

![Figure 2](image2.png)

(a) \(|u_2^N - u_{2,h}^N|\)

(b) \(|u_2^N - \tilde{u}_{2,h}^N|\)

Figure 2. Graphs of the errors for \(u_{2,h}^N \) and \(\tilde{u}_{2,h}^N \).
Figure 3. Graphs of the errors for p_N^h and \tilde{p}_N^h.

Figure 4. Comparison of stream lines.

REFERENCES

