Loading...

ÇмúÇà»ç

  >   ÇмúÇà»ç   >   2022 Ãá°èÇмú´ëȸ

2022 Ãá°èÇмú´ëȸ

µî·ÏÀÚ ¸®½ºÆ®
No. Name Affiliation Department
1 °­¸í¹Î Ãæ³²´ëÇб³ ¼öÇаú
2 °­»ó¿ì Çѱ¹°úÇбâ¼ú¿ø(KAIST) ¼ö¸®°úÇаú
3 °­¼ºÈ£ ±¹°¡¼ö¸®°úÇבּ¸¼Ò(NIMS) ÀÇ·á¼öÇבּ¸ºÎ
4 °­½ÂÀ± °í·Á´ëÇб³ ¼öÇаú
5 °íµ¿³² °¡Å縯´ëÇб³ ¼öÇаú
6 °í¼ºÀº °Ç±¹´ëÇб³
7 °í½ÂÂù University of Hong Kong Department of Mathematics
8 °í¿µ¼® °Ç±¹´ëÇб³ ¼öÇаú
9 °ûµµ¿µ Çѱ¹°úÇбâ¼ú¿ø(KAIST) ¼ö¸®°úÇаú
10 °û¹Î±Ô Àü³²´ëÇб³ ¼öÇаú
11 °û¼öºó °í·Á´ëÇб³ ¼öÇаú
12 ±Ç±â¿î µ¿±¹´ëÇб³ ¼öÇÐ
13 ±Ç±â¿õ °æºÏ´ëÇб³ ¼öÇкÎ
14 ±Ç¿ÀÁ¤ ÇѾç´ëÇб³ ¼öÇаú
15 ±ÇÀç·æ Æ÷Ç×°ø°ú´ëÇб³(POSTECH) Mathematics
16 ±ÇÇõ³² ¿¬¼¼´ëÇб³(¹Ì·¡) ¼ÒÇÁÆ®¿þ¾îÇкÎ
17 ±ÇÈñÀç Æ÷Ç×°ø°ú´ëÇб³(POSTECH) ¼öÇаú
18 ±è°æ¼ö °æÈñ´ëÇб³ ÀÀ¿ë¼öÇаú
19 ±è±¤¿¬ °­¿ø´ëÇб³ ¼öÇаú
20 ±èµµÇå ÇѾç´ëÇб³(ERICA) ÀÀ¿ë¼öÇаú
21 ±èµ¿±Ô Çѱ¹°úÇбâ¼ú¿ø(KAIST) ¼ö¸®°úÇаú
22 ±èµ¿¼ö KAIST
23 ±èµ¿¼ö KAIST
24 ±èµ¿Ã¶ Çѱ¹°úÇбâ¼ú¿ø ¼ö¸®°úÇаú
25 ±èµ¿Çö ¼º±Õ°ü´ëÇб³ AORC ¼öÇÐ
26 ±èµ¿Çö ºÎ»ê´ëÇб³ ¼öÇаú
27 ±èµ¿È¯ Çѱ¹°úÇбâ¼ú¿ø(KAIST) ¼ö¸®°úÇаú
28 ±èµÎȯ ¿¬¼¼´ëÇб³(¹Ì·¡) ¼öÇÐ
29 ±è¶ò¶Ë ¿¬¼¼´ë
30 ±è¹ÌÁö ºÎ»ê´ëÇб³ ¼öÇаú
31 ±è¹Î¼ö Çѱ¹°úÇбâ¼ú¿¬±¸¿ø(KIST) õ¿¬¹°ÀÎÆ÷¸Åƽ½º¿¬±¸¼¾ÅÍ
32 ±è¹ÎÁß ±¹°¡¼ö¸®°úÇבּ¸¼Ò(NIMS) »ê¾÷¼öÇÐÇõ½ÅÆÀ
33 ±èº°´Ô °æºÏ´ëÇб³ ¼öÇаú
34 ±èº¸¶õ °æºÏ´ëÇб³ ¼öÇб³À°°ú
35 ±è»ó±Ç °í·Á´ëÇб³ ¼öÇаú
36 ±è»óÀÏ ºÎ»ê´ëÇб³ ¼öÇаú
37 ±è»óÈ£ ¸íÁö´ëÇб³ ¼öÇаú
38 ±è¼º¿¬ °íµî°úÇпø(KIAS) ¼öÇкÎ
39 ±è¼ºÀ± ¿¬¼¼´ëÇб³ ¼öÇаè»êÇкÎ(°è»ê°úÇаøÇÐ)
40 ±è¼ºÀº Çѱ¹°úÇбâ¼ú¿ø(KAIST) Mathematical Sciences
41 ±è¼Ò¿¬ ºÎ»ê´ëÇб³ Mathematics
42 ±è½ÂÀÏ °æÈñ´ëÇб³ ¼öÇаú
43 ±è½Å¿í »ó¸í´ëÇб³ College of Kyedang General Education
44 ±è¾çÁø °Ç±¹´ëÇб³ ¼öÇаú
45 ±è¿µÁø (ÁÖ)ÇϽº (ÁÖ)ÇϽº
46 ±èÀ±È£ ¿ï»ê°úÇбâ¼ú¿ø Mathematical Sciences
47 ±èÀºÁ¤ Çѱ¹°úÇбâ¼ú¿¬±¸¿ø(KIST) õ¿¬¹° ÀÎÆ÷¸Åƽ½º
48 ±èÀÍÇ¥ ´ë±¸´ëÇб³ ¼öÇб³À°°ú
49 ±èÀå¼ö ¼º±Õ°ü´ëÇб³ ¼öÇаú
50 ±èÀç°æ Çѱ¹°úÇбâ¼ú¿ø(KAIST) ¼ö¸®°úÇаú
51 ±èÁ¤Àº ¿ï»ê°úÇбâ¼ú¿ø ¼ö¸®°úÇаú
52 ±èÁؼ® °í·Á´ëÇб³ ¼öÇаú
53 ±èÁö¸í ¼º±Õ°ü´ëÇб³ ¼öÇаú
54 ±èÁö¼ö ¸íÁö´ëÇб³ ¼öÇаú
55 ±èÁöÇö ºÎ»ê´ëÇб³ ¼öÇаú
56 ±èÁø¼ö Æ÷Ç×°ø°ú´ëÇб³(POSTECH) ¼öÇаú
57 ±èÁø¿µ Æ÷Ç×°ø°ú´ëÇб³(POSTECH) ¼öÇаú
58 ±èÁø¿µ Æ÷Ç×°ø°ú´ëÇб³ ¼öÇаú
59 ±èÁøÇÏ ±âÃÊ°úÇבּ¸¿ø(IBS) ÀÌ»ê¼öÇб׷ì
60 ±èÅäºó °æÈñ´ëÇб³ ¼öÇаú
61 ±èÇö ±âÃÊ°úÇבּ¸¿ø(IBS) ÀÇ»ý¸í¼öÇб׷ì
62 ±èÇö±Õ ¿¬¼¼´ëÇб³ ¼öÇаú
63 ±èÇö¹Î ±¹°¡¼ö¸®°úÇבּ¸¼Ò(NIMS) ±¹°¡¼ö¸®°úÇבּ¸¼Ò
64 ±èÇö¼ö Çѱ¹°úÇбâ¼ú¿ø(KAIST) ¼ö¸®°úÇаú
65 ±èÇöÁÖ Çѱ¹¿¡³ÊÁö°ø°ú´ëÇб³ ¿¡³ÊÁö°øÇкÎ
66 ±èÇü¹Ì Àü³²´ëÇб³ ¼öÇÐ/Åë°èÇаú
67 ±èÇü¼ö »ï¼º¹Ì·¡±â¼úÀ°¼ºÀç´Ü
68 ±èÇüö °Ç±¹´ëÇб³ ¼öÇаú
69 ±èÇýÇö °æÈñ´ëÇб³ ÀÀ¿ë¼öÇаú
70 ±èÈ­Æò DEEPNOID ÀÇ·á AI
71 ±èÈñâ Æ÷Ç×°ø°ú´ëÇб³(POSTECH) ¼öÇаú
72 ³ª°æ¾Æ ±¹°¡¼ö¸®°úÇבּ¸¼Ò(NIMS) ºÎ»êÀÇ·á¼öÇм¾ÅÍ
73 ³ª°æ¾Æ ±¹°¡¼ö¸®°úÇבּ¸¼Ò ºÎ»êÀÇ·á¼öÇм¾ÅÍ
74 µµ¿µÇØ °æºÏ´ëÇб³
75 ·ù°æ¼® ¼­¿ï´ëÇб³ ¼ö¸®°úÇкÎ
76 ·ù±æ³² ´ë±¸´ëÇб³ ITÀ¶ÇÕ°øÇаú
77 ·ù¹Ì¼ö ÃæºÏ´ëÇб³ ¼öÇаú
78 ·ùÇö±â ºÎ»ê´ëÇб³ ¼öÇаú
79 ¸®Ä¡ ºÎ»ê´ëÇб³ ¼öÇаú
80 ¹®¹Ì³² À°±º»ç°üÇб³ ¼öÇаú
81 ¹®¼ºÈ¯ °æºÏ´ëÇб³ ¼öÇаú
82 ¹®¼ºÈ¯ °æºÏ´ëÇб³ ¼öÇаú
83 ¹Ú´Ùºó °æºÏ´ëÇб³ ¼öÇкÎ
84 ¹Úµ¿ÈÆ ºÎ»ê´ëÇб³ Ç×°ø¿ìÁÖ°øÇаú
85 ¹Úº¸¶÷ ¾ÆÁÖ´ëÇб³ ¼öÇаú
86 ¹Ú»ó¹Î ºÎ»ê´ëÇб³ ¼öÇаú
87 ¹Ú¼º¿í ¿¬¼¼´ëÇб³ °è»ê°úÇаøÇÐ
88 ¹Ú¼¼È£ ±âÃÊ°úÇבּ¸¿ø(IBS) ÀÇ»ý¸í¼öÇб׷ì
89 ¹Ú¿ø±¤ ±¹¹Î´ëÇб³ Á¤º¸º¸¾È¾ÏÈ£¼öÇаú
90 ¹ÚÀºÈñ °­¿ø´ëÇб³ AI¼ÒÇÁÆ®¿þ¾îÇаú
91 ¹ÚÁ¤Àº ´º¿åÁÖ¸³´ëÇб³
92 ¹ÚÁ¤Àº ´º¿åÁÖ¸³´ëÇб³
93 ¹ÚÁ¾À° °æºÏ´ëÇб³ ¼öÇаú
94 ¹ÚÁ¾ÀÎ °æ¹®»ç ÃâÆÇ»ç
95 ¹ÚÁø¼Ö ¿¬¼¼´ëÇб³ -
96 ¹Úö¹Î ±¹°¡¼ö¸®°úÇבּ¸¼Ò -
97 ¹Úö¹Î ±¹°¡¼ö¸®°úÇבּ¸¼Ò(NIMS) »ê¾÷¼öÇבּ¸º»ºÎ/»ê¾÷¼öÇÐÇõ½ÅÆÀ(´ëÀü)
98 ¹ÚÇõÁÖ Çѱ¹°úÇбâ¼ú¿ø ¼ö¸®°úÇаú
99 ¹ÚÇü¼® ±¹°¡¼ö¸®°úÇבּ¸¼Ò(NIMS) »ê¾÷¼öÇבּ¸º»ºÎ
100 ¹ÚÇüö ¿¬¼¼´ëÇб³ (¹Ì·¡) ¼öÇаú
101 ¹æ¼¼Á¤ ¿µ³²´ëÇб³ ¼öÇаú
102 ¹èÁöÈ« ¼º±Õ°ü´ëÇб³ ¼öÇаú
103 ¹èÇü¿Á ¾ÆÁÖ´ëÇб³ ±ÝÀ¶°øÇаú
104 ¹éÀçÈÆ ¸íÁö´ëÇб³ ¼öÇаú
105 º¯Á¾Çõ ºÎ»ê´ëÇб³ ¼ö¸®°úÇבּ¸¼Ò
106 ¼­´Ù¼Ö ¿ï»ê´ëÇб³ Á¶¼± ¹× Çؾç°øÇаú
107 ¼­»ûº° °æ³²´ëÇб³ ¼öÇб³À°°ú
108 ¼­½ÂÇö °­¿ø´ëÇб³ ¼öÇб³À°°ú
109 ¼­¿øµÎ ¿¬¼¼´ëÇб³ Àü»êÇаú
110 ¼­ÀÌÇõ ¼º±Õ°ü´ëÇб³ ¼öÇаú
111 ¼­Á¾Çö Çѹç´ëÇб³ ÀÀ¿ë¼öÇÐ ¹× ±¤Çבּ¸¼Ò
112 ¼ºµ¿Çå ºÎ»ê´ëÇб³ ¼öÇаú
113 ¼º¶ô°æ ¿ï»ê°úÇбâ¼ú¿ø(UNIST) ¼ö¸®°úÇаú
114 ¼Õ¹Î°æ ¼º±Õ°ü´ëÇб³ ¼öÇаú
115 ¼Õ¼ºÀÍ °­¸ª¿øÁÖ´ëÇб³ ¼öÇаú
116 ¼Õ¼ºÈ£ ¼øõÇâ´ëÇб³ ±â°è°øÇаú
117 ¼Õâ´ë °æºÏ´ëÇб³ Åë°èÇаú
118 ¼ÕÈÖÀç Çѹç´ëÇб³ ÀΰøÁö´É¼ÒÇÁÆ®¿þ¾îÇаú
119 ¼Û°æ¿ì °æÈñ´ëÇб³
120 ¼Û¿µÁö ¼þ½Ç´ëÇб³ ¼öÇаú
121 ¼Û¿ì±Ù ¼º±Õ°ü´ëÇб³ ¼öÇаú
122 ¼Û¿ø¿µ KAIST ¼ö¸®°úÇаú
123 ¼ÛÀ±¹Î ±âÃÊ°úÇבּ¸¿ø(IBS) ÀÇ»ý¸í¼öÇб׷ì
124 ½Åµ¿¿í ¸íÁö´ëÇб³ ¼öÇаú
125 ½Åµ¿ÀÎ °¡Å縯´ëÇб³
126 ½Åº´Ãá Àü³²´ëÇб³ ¼öÇаú
127 ½Åº¸¹Ì ¼º±Õ°ü´ëÇб³ ÀÀ¿ë´ë¼ö¹×ÃÖÀûÈ­¿¬±¸¼¾ÅÍ
128 ½Å¿ø¿ë ¿¬¼¼´ëÇб³ ¼öÇаè»êÇкÎ(°è»ê°úÇаøÇÐ)
129 ½ÅÀç¹Î ÃæºÏ´ëÇб³ ¼öÇаú
130 ½ÅÀç¹Î Çѹç´ëÇб³ ±âÃÊ°úÇкÎ
131 ½ÅÈ¿¹Î Æ÷Ç×°ø°ú´ëÇб³(POSTECH) ¼öÇаú
132 ¾Æº£½º ¿Í½É ºÎ»ê´ëÇб³ ¼öÇаú
133 ¾ÆÁî¸ðÇÁ ¼Î¸£ÄÜ ºÎ»ê´ëÇб³ ¼öÇаú
134 ¾È´ëÈÆ ¸íÁö´ëÇб³ ¼öÇаú
135 ¾È¿µÁØ Á¶¼±´ëÇб³ ¼öÇб³À°°ú
136 ¾ÈÀç¼· ¼º±Õ°ü´ëÇб³ ¼öÇаú
137 ¾ÈÁ¤È£ Çѱ¹°úÇбâ¼ú¿ø ¼ö¸®°úÇаú
138 ¾ÈÄ¡¿µ ±¹°¡¼ö¸®°úÇבּ¸¼Ò(NIMS) »ê¾÷¼öÇבּ¸º»ºÎ
139 ¾çÀ±Á¤ ±¹°¡¼ö¸®°úÇבּ¸¼Ò(NIMS) »ê¾÷¼öÇבּ¸º»ºÎ ÀǷ῵»ó¿¬±¸ÆÀ
140 ¾çÈ¿¼± °æÈñ´ëÇб³
141 ¾çÈñÁØ °æÈñ´ëÇб³ ¼öÇаú
142 ¾ö»óÀÏ ±âÃÊ°úÇבּ¸¿ø(IBS) ÀÌ»ê¼öÇб׷ì
143 ¿©ÁÖ¿± Ãæ³²´ëÇб³ ¼öÇаú
144 ¿À´ö¼ø Ãæ³²´ëÇб³ ¼öÇаú
145 ¿ÀÃ῵ Àü³²´ëÇб³ ¼öÇб³À°°ú
146 ¿øÀ¯Áø Ãæ³²´ëÇб³ ¼öÇаú(ÀÀ¿ë¼öÇÐ)
147 À¯¹ÎÇÏ ±¹°¡¼ö¸®°úÇבּ¸¼Ò(NIMS) »ê¾÷¼öÇבּ¸º»ºÎ
148 À¯º´Àº Çѱ¹°úÇбâ¼ú¿ø(KAIST) ¼ö¸®°úÇаú
149 À¯ÀÇÁ¤ °¡Å縯´ëÇб³
150 À¯ÀçÁØ UNIST ÀΰøÁö´É´ëÇпø
151 À¯Áø±Ô Çѱ¹°úÇбâ¼ú¿ø(KAIST) Mathematical Sciences
152 À¯Ã¤Àº °¡Å縯´ëÇб³
153 À¯Ã¤Àº Ä«Å縯´ëÇб³
154 À±°­ÁØ ±¹°¡¼ö¸®°úÇבּ¸¼Ò(NIMS) ºÎ»êÀÇ·á¼öÇм¾ÅÍ
155 À±°æÈ£ ¿¬¼¼´ëÇб³ ¼öÇаè»êÇкÎ(°è»ê°úÇаøÇÐ)
156 À±»ó¿î ¼º±Õ°ü´ëÇб³ ¼öÇб³À°Çаú
157 À±¼®Ç¥ ¿ï»ê´ëÇб³ Á¶¼±°øÇаú
158 À±¼ºÇÏ ÀÌÈ­¿©ÀÚ´ëÇб³ ¼ö¸®°úÇבּ¸¼Ò
159 À±¿µ¼ö °æºÏ´ëÇб³ ¼öÇаú
160 À±ÁöÈÆ ºÎ»ê´ëÇб³ ¼öÇаú
161 À±Ã¢¿í Ãæ³²´ëÇб³ ¼öÇб³À°°ú
162 À±È«±Ô ¿ï»ê°úÇбâ¼ú¿ø ¼ö¸®°úÇаú
163 ÀÌ°Ç Àü³²´ëÇб³ ¼öÇÐ/Åë°èÇаú
164 ÀÌ°æ±Ô °í·Á´ëÇб³ ¼öÇкÎ
165 À̱¤¿¬ ÇѼ­´ëÇб³ ¼öÇаú
166 ÀÌ±Ô¸í ºÎ°æ´ëÇб³ ÀÀ¿ë¼öÇаú
167 À̵¿±¸ °Ç±¹´ëÇб³ ¼öÇаú
168 À̵¿¼® ¼º±Õ°ü´ëÇб³ ¼öÇаú
169 À̸í¼ö ¼º±Õ°ü´ëÇб³ ¼öÇаú
170 À̹α⠱âÃÊ°úÇבּ¸¿ø ÀÇ»ý¸í¼öÇб׷ì
171 À̹ÎÁö UNIST ¼ö¸®°úÇаú
172 À̺´ÁØ °¡Å縯´ëÇб³ ¼öÇаú
173 À̺¸¼± °æ¹®»ç ÃâÆÇ»ç
174 À̼±¹Ì °æÈñ´ëÇб³ ÀÀ¿ë¼öÇаú
175 À̼¼¿¬ ±¹°¡¼ö¸®°úÇבּ¸¼Ò(NIMS) »ê¾÷¼öÇÐÇõ½ÅÆÀ
176 À̼öö â¿ø´ëÇб³ ¼öÇаú
177 À̼øÁÖ ±¹°¡¼ö¸®°úÇבּ¸¼Ò(NIMS) µ¥ÀÌÅͺм®¿¬±¸ÆÀ
178 ÀÌ½Â±Ô °í·Á´ëÇб³ ÀÀ¿ë¼ö¸®°úÇкÎ
179 À̽ÂÇö ¼º±Õ°ü´ëÇб³ ¼öÇаú
180 À̽ÂÈñ °Ç¾ç´ëÇб³ÀÇ·á¿ø ÇコÄɾÀÌÅÍ»çÀ̾𽺼¾ÅÍ
181 À̽ÃÀº ºÎ»ê´ëÇб³ ¼öÇаú
182 ÀÌ¿µ±Ô Çѱ¹°úÇбâ¼ú¿ø(KAIST) ¼ö¸®°úÇаú
183 ÀÌ¿µ¼± Çѱ¹´º¿åÁÖ¸³´ëÇб³ ÀÀ¿ë¼öÇÐÅë°èÇаú
184 ÀÌ¿ÏÈ£ ±¹°¡¼ö¸®°úÇבּ¸¼Ò(NIMS) »ê¾÷¼öÇבּ¸º»ºÎ
185 ÀÌ¿ìÁÖ Çѱ¹°úÇбâ¼ú¿ø(KAIST) ¼ö¸®°úÇаú
186 ÀÌÀ¯Áø ºÎ»ê´ëÇб³ ¼öÇаú
187 ÀÌÀçÈ­ ¼º±Õ°ü´ëÇб³ ¿¡³ÊÁöȯ°æÀ¶ÇÕ Å°¿ì¸®¿¬±¸¼¾ÅÍ
188 ÀÌÁ¾±Ô ºÎ»ê´ëÇб³ ¼öÇаú
189 ÀÌÁ¾¹Î °Ç±¹´ëÇб³ ¼öÇаú
190 ÀÌÁØ°æ ÇѾç´ëÇб³ ¼öÇаú
191 ÀÌÁؼ­ ¿ï»ê°úÇбâ¼ú¿ø(UNIST) Mathematical Sciences
192 ÀÌÁØ¿± ÀÌÈ­¿©ÀÚ´ëÇб³ ¼öÇаú
193 ÀÌÁØÈ£ °Ç±¹´ëÇб³ ¼öÇаú
194 ÀÌÁö¹Î ¿¬¼¼´ëÇб³ ÀÀ¿ëÇؼ® ¹× °è»ê¼¾ÅÍ (CMAC)
195 ÀÌÁöÀº ¼¼Á¾´ëÇб³ ¼öÇÐÅë°èÇкÎ
196 ÀÌâ¿Á Çѱ¹°úÇбâ¼ú¿ø(KAIST) ¼ö¸®°úÇаú
197 ÀÌâÇü ¿ï»ê°úÇбâ¼ú¿ø(UNIST) ¼ö¸®°úÇаú
198 ÀÌ俵 °í·Á´ëÇб³ 4´Ü°è BK21 ¼öÇб³À°¿¬±¸ÆÀ
199 ÀÌÅÂ¿ë ¿¬¼¼´ëÇб³ ¼öÇаè»êÇкΠ(¼öÇаú)
200 ÀÌÇö±Ù ±¤¿î´ëÇб³ ¼öÇаú
201 ÀÌÇö´ë ÀÎÇÏ´ëÇб³ ¼öÇаú
202 ÀÌÇüõ ¾ÆÁÖ´ëÇб³ Mathematics
203 ÀÌÈ¿¼ø °æÈñ´ëÇб³ ¼öÇаú
204 ÀÌÈ¿Á¤ °æºÏ´ëÇб³ ÀÚ¿¬°úÇдëÇÐ Åë°èÇаú
205 ÀÓ°æ¹Î ±¹°¡¼ö¸®°úÇבּ¸¼Ò ºÎ»êÀÇ·á¼öÇм¾ÅÍ
206 ÀÓµ¿°Ç ¿¬¼¼´ëÇб³(¹Ì·¡) ¼öÇаú
207 Àӹ̰æ Çѱ¹°úÇбâ¼ú¿ø(KAIST) Department of Mathematical Sciences
208 ÀÓ¼º¼ö Ãæ³²´ëÇб³ ÄÄÇ»ÅÍ°øÇаú
209 ÀÓÀ¯³ª °Ç±¹´ëÇб³ ¼öÇаú
210 Àå ¸ÞÀÌ¿º ºÎ»ê´ëÇб³ ¼öÇаú
211 ÀåºÀ¼ö ¿ï»ê°úÇбâ¼ú¿ø Mathematical Scicences
212 ÀåÁöÇõ ¼º±Õ°ü´ëÇб³ ¼öÇаú
213 Àü±â¿Ï ±¹°¡¼ö¸®°úÇבּ¸¼Ò(NIMS) ÀÇ·á¼öÇבּ¸ºÎ
214 Àü±âÇö °æºÏ´ëÇб³ ¼öÇкÎ
215 Àü¿µ¸ñ ¾ÆÁÖ´ëÇб³ ¼öÇаú
216 Àü¿µÀç °æÈñ´ëÇб³ ¼öÇаú
217 Àü¿øÁÖ KAIST ±â°è°øÇаú
218 ÀüÀç±â Àü³²´ëÇб³ µ¥ÀÌÅÍ»çÀ̾ð½ºÇаú
219 ÀüÁØÈÖ °æÈñ´ëÇб³ ¼öÇаú
220 ÀüÈñ¿ë ºÎ»ê´ëÇб³ ¼öÇаú
221 Á¤´Ù·¡ °­¿ø´ëÇб³ ¼öÇаú
222 Á¤¸íÇö ±¹°¡¼ö¸®°úÇבּ¸¼Ò(NIMS) »ê¾÷¼öÇÐÇõ½ÅÆÀ
223 Á¤¹Ì¿¬ Çѱ¹¿Ü±¹¾î´ëÇб³ ¼öÇаú
224 Á¤¹ÎÁö ÀÎÇÏ´ëÇб³ Ç×°ø¿ìÁÖ°øÇаú
225 Á¤¼±È£ ÀÎÇÏ´ëÇб³ Ç×°ø¿ìÁÖ°øÇаú
226 Á¤À±¸ð ¼º±Õ°ü´ëÇб³ ¼öÇаú
227 Á¤Àº¿Á °Ç±¹´ëÇб³ ¼öÇаú
228 Á¤ÀÏÈ¿ ºÎ»ê´ëÇб³ ¼öÇаú
229 Á¤ÀçÇÑ Æ÷Ç×°ø°ú´ëÇб³(POSTECH) ¼öÇаú
230 Á¤ÇüÁø KAIST ¹ÙÀÌ¿À¹×³ú°øÇаú
231 Á¤Çý¿µ ÇѾç´ëÇб³(ERICA) ÀÀ¿ë¼öÇаú
232 Á¤È¿Áø ±¹°¡¼ö¸®°úÇבּ¸¼Ò(NIMS) »ê¾÷¼öÇÐÇõ½ÅÆÀ
233 Á¶°Ç¿ì ¼º±Õ°ü´ëÇб³ ±âÃÊ°úÇבּ¸¿ø
234 Á¶°æ¹Ì µ¿¼­´ëÇб³ Á¤º¸º¸¾ÈÇаú
235 Á¶±¤Çö KAIST ¹ÙÀÌ¿À¹×³ú°øÇаú
236 Á¶±¹È­ ÀÌÈ­¿©ÀÚ´ëÇб³ ¼ö¸®°úÇבּ¸¼Ò ¼ö¸®°úÇבּ¸¼Ò
237 Á¶±âÇÊ ºÎ»ê´ëÇб³ Industrical Mathematics Center
238 Á¶´ëÈñ Çѱ¹°úÇбâ¼ú¿ø(KAIST) ¼ö¸®°úÇаú
239 Á¶´öºó µ¿±¹´ëÇб³ ¼öÇаú
240 Á¶µµ»ó ±¹°¡¼ö¸®°úÇבּ¸¼Ò(NIMS) »ê¾÷¼öÇÐÇõ½Å¼¾ÅÍ
241 Á¶¼ºÇÏ Æ÷Ç×°ø°ú´ëÇб³(POSTECH) ¼öÇÐ
242 Á¶¿ø¼® °æºÏ´ëÇб³ Åë°èÇаú
243 Á¶ÀºÇØ ºÎ»ê´ëÇб³ ¼öÇаú
244 Á¶ÁØ¿ì ºÎ»ê´ëÇб³ ¼öÇаú
245 Á¶ÁØÈ« ±¹°¡¼ö¸®°úÇבּ¸¼Ò(NIMS) »ê¾÷¼öÇבּ¸º»ºÎ
246 Á¶Áø¿¬ ÀÎÇÏ´ëÇб³ Ç×°ø¿ìÁÖ°øÇаú
247 Á¶Áøȯ ±¹°¡¼ö¸®°úÇבּ¸¼Ò(NIMS) »ê¾÷¼öÇÐÇõ½Å¼¾ÅÍ
248 Á¶ÇѾó °Ç±¹´ëÇб³ ¼öÇаú
249 Á¶Çöö ¿¬¼¼´ëÇб³ ¼öÇаè»êÇкÎ(°è»ê°úÇаøÇÐ)
250 Á¶ÇöÅ ±âÃÊ°úÇבּ¸¿ø(IBS) ÀÇ»ý¸í¼öÇб׷ì
251 Áø°æȯ ´ë±¸°æºÏ°úÇбâ¼ú¿ø Àü±âÀüÀÚÄÄÇ»ÅÍ°øÇаú
252 ä¼®ÁÖ ±âÃÊ°úÇבּ¸¿ø(IBS) ÀÇ»ý¸í¼öÇб׷ì
253 伺Á¦ ±¹¹Î´ëÇб³ ¼öÇÐ
254 äÁö¼® Çѱ¹°úÇбâ¼ú¿ø ¼ö¸®°úÇаú
255 Ãֵμº Çѱ¹°úÇбâ¼ú¿ø ¼ö¸®°úÇаú
256 Ãֹμ® Æ÷Ç×°ø°ú´ëÇб³(POSTECH) ¼öÇаú
257 ÃÖ¹üÁØ Æ÷Ç×°ø°ú´ëÇб³(POSTECH) ¼öÇаú
258 ÃÖ¼±È­ ±¹°¡¼ö¸®°úÇבּ¸¼Ò(NIMS) »ê¾÷¼öÇÐÇõ½Å¼¾ÅÍ
259 ÃÖ¿ëÈ£ ´ë±¸´ëÇб³ ÄÄÇ»ÅÍÁ¤º¸°øÇкÎ(Á¤º¸º¸È£)
260 ÃÖ¿ø°æ ¼þ½Ç´ëÇб³ ¼öÇаú
261 ÃÖÀ±Ã¶ ±¤¿î´ëÇб³ ÀÎÁ¦´Ï¿òÇкδëÇÐ
262 ÃÖÀÎ±Ô ´ë±¸´ëÇб³ ITÀ¶ÇÕ°øÇаú
263 ÃÖÀç±Ô Tongji University School of Mathematical Sciences
264 ÃÖÀ缺 ¿ï»ê°úÇбâ¼ú¿ø(UNIST) ¼ö¸®°úÇаú
265 ÃÖÀçÀ¯ QTT -
266 ÃÖÁ¤ÀÏ ¿¬¼¼´ëÇб³ ¼öÇаè»êÇкÎ(°è»ê°úÇаøÇÐ)
267 ÃÖÁØ Çѱ¹°úÇбâ¼ú¿ø(KAIST) ¼ö¸®°úÇаú
268 ÃÖÁø¼º ºÎ»ê´ëÇб³ ¼öÇаú
269 ÃÖÇϳª ±¹°¡¼ö¸®°úÇבּ¸¼Ò(NIMS) »ê¾÷¼öÇÐÇõ½ÅÆÀ
270 ÃÖÇÏ¿µ °æºÏ´ëÇб³ ¼öÇаú
271 ÃÖÇöö ¿µ³²´ëÇб³
272 ÃÖÈñÁØ ¿¬¼¼´ëÇб³ ¼öÇаú
273 ÃÖÈñÁø ¿ï»ê°úÇбâ¼ú¿ø
274 Å°¸£¶ì ·¹µð ¿ï»ê°úÇбâ¼ú¿ø ¼ö¸®°úÇаú
275 Å°¸£¶ì ·¹µð ¿ï»ê°úÇбâ¼ú¿ø(UNIST) ¼ö¸®°úÇаú
276 ÅäÀ̹٠¾ÆÁöº¼¶ó ¹«½ºÅ¸ÆÄ °æºÏ´ëÇб³ ¼öÇаú
277 Æĸ£ºó »çÁö´Ù ºÎ»ê´ëÇб³ ¼öÇаú
278 ÇǽÂÁØ °æºÏ´ëÇб³ ¼öÇкÎ
279 ÇϹÌÁø ºÎ»ê´ëÇб³ ¼öÇаú
280 Çϼ®¹Î ±âÃÊ°úÇבּ¸¿ø(IBS) ÀÇ»ý¸í¼öÇб׷ì
281 ÇÏÅ¿µ ±¹°¡¼ö¸®°úÇבּ¸¼Ò(NIMS) »ê¾÷¼öÇבּ¸º»ºÎ
282 ÇÑ°¡Àº °æºÏ´ëÇб³ ¼öÇаú
283 ÇÔ¼®ÁØ °í·Á´ëÇб³ ¼öÇаú
284 ÇãÁ¤±Ô Àü³²´ëÇб³ Åë°èÇаú
285 ÇãÁØ ±¹°¡¼ö¸®°úÇבּ¸¼Ò(NIMS) »ê¾÷¼öÇÐÇõ½Å¼¾ÅÍ
286 ÇãÁö¼± ¾ÆÁÖ´ëÇб³ ¼öÇаú
287 Çãö¿ø ¼º±Õ°ü´ëÇб³ AORC ¼öÇаú
288 Çöµ¿ÈÆ ¼­¿ï´ëÇб³ ¼ö¸®°úÇкÎ
289 ÇöÀ±°æ ±¹°¡¼ö¸®°úÇבּ¸¼Ò(NIMS) »ê¾÷¼öÇבּ¸º»ºÎ/µ¥ÀÌÅͺм®¿¬±¸ÆÀ
290 Çöâ¹Î ¿¬¼¼´ëÇб³ ¼öÇаè»êÇкÎ(°è»ê°úÇаøÇÐ)
291 È«±æµ¿ ½Ã°øÁö °³¹ßÆÀ
292 È«¿µÁØ ¼º±Õ°ü´ëÇб³ ¼öÇаú
293 È«ÁöÈ£ Çѱ¹°úÇбâ¼ú¿ø ¼ö¸®°úÇаú
294 È«ÇõÇ¥ ±âÃÊ°úÇבּ¸¿ø(IBS) Biomedical Mathematics Group
295 Ȳ»ó¿í °¡Å縯´ëÇб³
296 Ȳ¿µÁø °í·Á´ëÇб³ ¼öÇаú
297 Ȳġ½Å °¡Å縯´ëÇб³
298 Amadeus Reinald ±âÃÊ°úÇבּ¸¿ø ÀÌ»ê¼öÇб׷ì
299 Amadeus Reinald ±âÃÊ°úÇבּ¸¿ø(IBS) ÀÌ»ê¼öÇб׷ì
300 Benjamin Lund ±âÃÊ°úÇבּ¸¿ø(IBS) ÀÌ»ê¼öÇб׷ì
301 Bong-Sik Kim American University of Ras Al Khaimah, UAE Mathematics and Natural Sciences
302 CAMBIE STIJN ±âÃÊ°úÇבּ¸¿ø(IBS) ±Ø´ÜÁ¶ÇÕ¹×È®·ü±×·ì
303 DE LOS REYES AURELIO ±âÃÊ°úÇבּ¸¿ø(IBS) ÀÇ»ý¸í¼öÇб׷ì
304 HERNANDEZ BRYAN ±âÃÊ°úÇבּ¸¿ø(IBS) ÀÇ»ý¸í¼öÇб׷ì
305 Joon Ha Howard University Department of Mathematics
306 Kevin Hendrey ±âÃÊ°úÇבּ¸¿ø(IBS) Discrete Mathematics group
307 Linda Cook ±âÃÊ°úÇבּ¸¿ø(IBS) Discrete Mathematics Group
308 M A Masud Çѱ¹°úÇбâ¼ú¿¬±¸¿ø(KIST) Natural Product Informatics Research Center
309 Muhammad Ismail ¿ï»ê°úÇбâ¼ú¿ø(UNIST) School of Natural Sciences (Mathematical)
310 Nguyen Thi Quynh University of Ulsan Ocean Engineering
311 Pascal Gollin ±âÃÊ°úÇבּ¸¿ø(IBS) ÀÌ»ê¼öÇб׷ì
312 Renier Mendoza °Ç±¹´ëÇб³ Department of Mathematics
313 Stijn Cambie IBS Extremal Combinatorics and Probability Group
314 Tuan Anh Do TU Graz Mathematics
315 Tuan Tran ±âÃÊ°úÇבּ¸¿ø(IBS) Discrete Mathematics Group, Center for Mathematical and Computational Sciences
316 Victor Kyungpook National University Mathematics
317 Victoria May Mendoza °Ç±¹´ëÇб³ Mathematics