Loading...

Á¤º¸±¤Àå

  >   Á¤º¸±¤Àå   >   Çà»çÁ¤º¸

Çà»çÁ¤º¸

Á¦¸ñ KSIAM 2023³â ÀΰøÁö´É Æ©Å丮¾ó ÁýÁß°­¿¬
ÀÛ¼ºÀÚ KSIAM µî·ÏÀÏ 2023-03-08
À̸ÞÀÏ ksiam@ksiam.org
KSIAM 2023³â ÀΰøÁö´É Æ©Å丮¾ó ÁýÁß°­¿¬
 
“2023³â °Ü¿ï ÀΰøÁö´É Æ©Å丮¾ó”À» ¼º°øÀûÀ¸·Î ¸¶Ä¡°í, ½Ã°£ ºÎÁ·À¸·Î ¾Æ½¬¿ü´ø Diffusion Probabilistic Models °­¿¬ÀÇ ÈļÓÀ¸·Î ³Ë³ËÇÏ°í ½ÉµµÀÖ´Â ¿Â¶óÀÎ ÁýÁß°­¿¬À» ¾Æ·¡¿Í °°ÀÌ °³ÃÖÇϰíÀÚ ÇÕ´Ï´Ù.
 
 
◦ ÁÖÃÖ: Çѱ¹»ê¾÷ÀÀ¿ë¼öÇÐȸ ÀΰøÁö´É¿¬±¸È¸(Data Science & Machine Learning ÇмúºÐ°ú)
◦ ÈÄ¿ø: ¼º±Õ°ü´ëÇб³ ¼öÇаú
 
◦ ÃÊ·Ï:
This tutorial overviews the recent development of diffusion probabilistic models and text-to-image generative models. We start with the theory of diffusion probabilistic models based on stochastic differential equations and then move on to conditional generation. We conclude with the recent text-conditioned diffusion models such as DALLE-2 and Stable Diffusion.
 
◦ µî·Ïºñ´Â ¹«·áÀÔ´Ï´Ù.
 
¡Ø ¹®ÀÇ : ksiam@ksiam.org / 02-2135-3660
÷ºÎÆÄÀÏ