
> ÇÐȸ¼Ò°³ > ¼ö»ó
KSIAM Çмú´ëȸ Æ÷½ºÅÍ ¿ì¼ö»ó ±ÔÁ¤
KSIAM Çмú´ëȸ Æ÷½ºÅÍ ¿ì¼ö»ó ±ÔÁ¤
Á¦Á¤ 2017. 03. 17
°³Á¤ 2019. 03. 01
°³Á¤ 2021. 07. 02
°³Á¤ 2022. 07. 09
°³Á¤ 2025. 09. 05
°³Á¤ 2025. 11. 07
Á¦1Á¶ (¸ñÀû) ÀÌ ±ÔÁ¤Àº Çѱ¹»ê¾÷ÀÀ¿ë¼öÇÐȸÀÇ Çмú´ëȸ Æ÷½ºÅÍ ¿ì¼ö»ó ¼ö»ó¿¡ °üÇÑ ÇÕ¸®ÀûÀÎ ±âÁØÀ» Á¤ÇÔÀ» ¸ñÀûÀ¸·Î ÇÑ´Ù.
Á¦2Á¶ (Çмú´ëȸÀÇ ±¸ºÐ) ÀÌ ±ÔÁ¤¿¡¼ Çмú´ëȸ¶ó ÇÔÀº Çѱ¹»ê¾÷ÀÀ¿ë¼öÇÐȸ¿¡¼ ÁÖ°üÇÏ´Â Ãá°èÇмú´ëȸ¿Í Ãß°èÇмú´ëȸ¸¦ ¸»ÇÑ´Ù.
Á¦3Á¶ (¼ö»óÀÚÀÇ ÀÚ°Ý)Á¦6Á¶ (Æò°¡ ¹× ¼ö»óÈĺ¸ÀÚ ¼±Á¤) Æò°¡´Â ÀüÁ¶ÀÇ °¢ ºÎ¹®¿¡¼ ±¸¼ºÇÏ´Â Æ÷»óÀ§¿øÈ¸¿¡¼ Æ÷½ºÅÍ ¿ì¼ö»ó Æò°¡Ç¥ (º°Ã· 2)¿¡ ÀǰÅÇÏ¿© Æò°¡À§¿øº° Æò°¡Á¡¼ö¿¡ ´ëÇØ, ÃÖ°í µæÁ¡À» ÇÑ Æ÷½ºÅÍÀÇ ÀúÀÚ¸¦ Æ÷½ºÅÍ ¿ì¼ö»ó Èĺ¸ÀÚ·Î ¼±Á¤ÇÑ´Ù.
Á¦7Á¶ (¼ö»óÀÚÀÇ °áÁ¤) ÀüÁ¶ÀÇ °¢ ºÎ¹®¿¡¼ °áÁ¤ÇÑ ¼ö»ó Èĺ¸Àڵ鿡 ´ëÇÑ Æ¯º°ÇÑ °á°Ý »çÇ×ÀÌ ¾øÀ½ÀÌ È®ÀεǸé, ÇÐȸ ȸÀåÀº À̵éÀ» Æ÷½ºÅÍ ¿ì¼ö»ó ¼ö»óÀÚ·Î °áÁ¤ÇÑ´Ù.
Á¦8Á¶ (½Ã»ó)| 2025 °¡À» Çмú´ëȸ Æ÷½ºÅÍ¿ì¼ö»ó ¼ö»óÀÚ | |
|---|---|
| À̸§ | ¼ö»ó ³í¹® |
| Á¤½ÂÈÆ, POSTECH ¼öÇаú | Asymptotic Convergence of Nonconvex Wasserstein Gradient Flow |
| ½Å¿µ¹Î, ¿¬¼¼´ëÇб³ ¼öÇаè»êÇкΠ(°è»ê°úÇаøÇаú) | A High-Performance Hybrid Parallel Framework for Electromagnetic Analysis Using MPI and CUDA |
| ¼¹ÎÁö, ¿¬¼¼´ëÇб³ ¼öÇаè»êÇкÎ(°è»ê°úÇаøÇаú) | High-Performance NEGF: A Low-Rank Approximation Approach |
| ÀÌÀ¯½Â, Áß¾Ó´ë ¼öÇаú | Challenges in Training Physics-Informed Neural Networks (PINNs) for Long-Time Interval |
| °¹ÎÁö, POSTECH ¼öÇаú | Noise-Robust Absence of Stochastic Turing Patterns in a Class of Chemical Reaction Networks |
| À̹μö, POSTECH ¼öÇаú | Partially Linear Contextual Bandits |
| ±è»ê, KAIST ³úÀÎÁö°úÇаú | A Parallel Asymmetric Particle Gaussian Mixture Filter for State-space Estimation of Highly Nonlinear Oscillators |
![]() |
|